These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26029069)

  • 1. Aggressive vocal expressions-an investigation of their underlying neural network.
    Klaas HS; Frühholz S; Grandjean D
    Front Behav Neurosci; 2015; 9():121. PubMed ID: 26029069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Talking in Fury: The Cortico-Subcortical Network Underlying Angry Vocalizations.
    Frühholz S; Klaas HS; Patel S; Grandjean D
    Cereb Cortex; 2015 Sep; 25(9):2752-62. PubMed ID: 24735671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a fronto-temporal neural network for the decoding of angry vocal expressions.
    Frühholz S; Grandjean D
    Neuroimage; 2012 Sep; 62(3):1658-66. PubMed ID: 22721630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory-motor networks involved in speech production and motor control: an fMRI study.
    Behroozmand R; Shebek R; Hansen DR; Oya H; Robin DA; Howard MA; Greenlee JD
    Neuroimage; 2015 Apr; 109():418-28. PubMed ID: 25623499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural decoding of discriminative auditory object features depends on their socio-affective valence.
    Frühholz S; van der Zwaag W; Saenz M; Belin P; Schobert AK; Vuilleumier P; Grandjean D
    Soc Cogn Affect Neurosci; 2016 Oct; 11(10):1638-49. PubMed ID: 27217117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody.
    Ethofer T; Kreifelts B; Wiethoff S; Wolf J; Grodd W; Vuilleumier P; Wildgruber D
    J Cogn Neurosci; 2009 Jul; 21(7):1255-68. PubMed ID: 18752404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pitch underlies activation of the vocal system during affective vocalization.
    Belyk M; Brown S
    Soc Cogn Affect Neurosci; 2016 Jul; 11(7):1078-88. PubMed ID: 26078385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.
    Guo Z; Wu X; Li W; Jones JA; Yan N; Sheft S; Liu P; Liu H
    J Neurosci; 2017 Oct; 37(43):10323-10333. PubMed ID: 28951450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing of emotional vocalizations in bilateral inferior frontal cortex.
    Frühholz S; Grandjean D
    Neurosci Biobehav Rev; 2013 Dec; 37(10 Pt 2):2847-55. PubMed ID: 24161466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "It's Not What You Say, But How You Say it": A Reciprocal Temporo-frontal Network for Affective Prosody.
    Leitman DI; Wolf DH; Ragland JD; Laukka P; Loughead J; Valdez JN; Javitt DC; Turetsky BI; Gur RC
    Front Hum Neurosci; 2010; 4():19. PubMed ID: 20204074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partially Overlapping Brain Networks for Singing and Cello Playing.
    Segado M; Hollinger A; Thibodeau J; Penhune V; Zatorre RJ
    Front Neurosci; 2018; 12():351. PubMed ID: 29892211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior Communication of Positive Emotions Through Nonverbal Vocalisations Compared to Speech Prosody.
    Kamiloğlu RG; Boateng G; Balabanova A; Cao C; Sauter DA
    J Nonverbal Behav; 2021; 45(4):419-454. PubMed ID: 34744232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional neuroimaging of human vocalizations and affective speech.
    Frühholz S; Sander D; Grandjean D
    Behav Brain Sci; 2014 Dec; 37(6):554-5; discussion 577-604. PubMed ID: 25514944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling emotional signals in the brain: an ALE meta-analysis of vocal affect perception.
    Mauchand M; Zhang S
    Cogn Affect Behav Neurosci; 2023 Feb; 23(1):17-29. PubMed ID: 35945478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain network dynamics in the human articulatory loop.
    Nishida M; Korzeniewska A; Crone NE; Toyoda G; Nakai Y; Ofen N; Brown EC; Asano E
    Clin Neurophysiol; 2017 Aug; 128(8):1473-1487. PubMed ID: 28622530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ACC and IPL networks in the perception of the faces of parents during selective tasks.
    Zhai H; Yu Y; Zhang W; Chen G; Jia F
    Brain Imaging Behav; 2016 Dec; 10(4):1172-1183. PubMed ID: 26613720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential decoding of emotion from human non-linguistic vocalizations versus speech prosody.
    Pell MD; Rothermich K; Liu P; Paulmann S; Sethi S; Rigoulot S
    Biol Psychol; 2015 Oct; 111():14-25. PubMed ID: 26307467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative neurological approach to emotional expressions in primate vocalizations.
    Gruber T; Grandjean D
    Neurosci Biobehav Rev; 2017 Feb; 73():182-190. PubMed ID: 27993605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral dorsal and ventral fiber pathways for the processing of affective prosody identified by probabilistic fiber tracking.
    Frühholz S; Gschwind M; Grandjean D
    Neuroimage; 2015 Apr; 109():27-34. PubMed ID: 25583613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific brain networks during explicit and implicit decoding of emotional prosody.
    Frühholz S; Ceravolo L; Grandjean D
    Cereb Cortex; 2012 May; 22(5):1107-17. PubMed ID: 21750247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.