These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26029197)

  • 1. Maximizing efficiency of rumen microbial protein production.
    Hackmann TJ; Firkins JL
    Front Microbiol; 2015; 6():465. PubMed ID: 26029197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.
    Teixeira CRV; Lana RP; Tao J; Hackmann TJ
    FEMS Microbiol Ecol; 2017 Jun; 93(6):. PubMed ID: 28486619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the responses of mixed rumen microbes to excess carbohydrate.
    Hackmann TJ; Diese LE; Firkins JL
    Appl Environ Microbiol; 2013 Jun; 79(12):3786-95. PubMed ID: 23584777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.
    Denton BL; Diese LE; Firkins JL; Hackmann TJ
    Appl Environ Microbiol; 2015 Mar; 81(5):1832-8. PubMed ID: 25548053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of methods to detect changes in reserve carbohydrate for mixed rumen microbes.
    Hackmann TJ; Keyser BL; Firkins JL
    J Microbiol Methods; 2013 Jun; 93(3):284-91. PubMed ID: 23570905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing microbial protein synthesis in the rumen.
    Firkins JL
    J Nutr; 1996 Apr; 126(4 Suppl):1347S-54S. PubMed ID: 8642482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies that ruminal bacteria use to handle excess carbohydrate.
    Russell JB
    J Anim Sci; 1998 Jul; 76(7):1955-63. PubMed ID: 9690652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria.
    Strobel HJ; Russell JB
    J Dairy Sci; 1986 Nov; 69(11):2941-7. PubMed ID: 3805466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of different rumen microbial groups to gas, short-chain fatty acid and ammonium production from different diets-an approach in an in vitro fermentation system.
    Mobashar M; Hummel J; Blank R; Südekum KH
    J Anim Physiol Anim Nutr (Berl); 2019 Jan; 103(1):17-28. PubMed ID: 30280429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of amino nitrogen on the energetics of ruminal bacteria and its impact on energy spilling.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1996 Jul; 79(7):1237-43. PubMed ID: 8872717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro methane formation and carbohydrate fermentation by rumen microbes as influenced by selected rumen ciliate species.
    Zeitz JO; Kreuzer M; Soliva CR
    Eur J Protistol; 2013 Aug; 49(3):389-99. PubMed ID: 23578814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows.
    Oelker ER; Reveneau C; Firkins JL
    J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of bacterial growth: balance of anabolic and catabolic reactions.
    Russell JB; Cook GM
    Microbiol Rev; 1995 Mar; 59(1):48-62. PubMed ID: 7708012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energy spilling reactions of bacteria and other organisms.
    Russell JB
    J Mol Microbiol Biotechnol; 2007; 13(1-3):1-11. PubMed ID: 17693707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotrichid protozoa influence conversion of glucose to glycogen and other microbial products.
    Hall MB
    J Dairy Sci; 2011 Sep; 94(9):4589-602. PubMed ID: 21854932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes.
    Hall MB; Weimer PJ
    J Dairy Sci; 2016 Jan; 99(1):245-57. PubMed ID: 26601577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives on ruminant nutrition and metabolism I. Metabolism in the rumen.
    Annison EF; Bryden WL
    Nutr Res Rev; 1998 Dec; 11(2):173-98. PubMed ID: 19094246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative significance of exogenous and de novo synthesized fatty acids in the formation of rumen microbial lipids in vitro.
    Demeyer DI; Henderson C; Prins RA
    Appl Environ Microbiol; 1978 Jan; 35(1):24-31. PubMed ID: 623468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate.
    Hackmann TJ; Firkins JL
    Front Microbiol; 2015; 6():622. PubMed ID: 26157432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.