BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 26029201)

  • 1. Microbial interspecies interactions: recent findings in syntrophic consortia.
    Kouzuma A; Kato S; Watanabe K
    Front Microbiol; 2015; 6():477. PubMed ID: 26029201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecological and evolutionary interactions in syntrophic methanogenic consortia.
    Kato S; Watanabe K
    Microbes Environ; 2010; 25(3):145-51. PubMed ID: 21576866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion.
    Barua S; Dhar BR
    Bioresour Technol; 2017 Nov; 244(Pt 1):698-707. PubMed ID: 28818798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms.
    Xu H; Chang J; Wang H; Liu Y; Zhang X; Liang P; Huang X
    Sci Total Environ; 2019 Dec; 695():133876. PubMed ID: 31756846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation.
    Zhuang L; Tang J; Wang Y; Hu M; Zhou S
    J Hazard Mater; 2015 Aug; 293():37-45. PubMed ID: 25827267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of methanogenesis by electric syntrophy with biogenic iron-sulfide minerals.
    Kato S; Igarashi K
    Microbiologyopen; 2019 Mar; 8(3):e00647. PubMed ID: 29877051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.
    Chen S; Rotaru AE; Liu F; Philips J; Woodard TL; Nevin KP; Lovley DR
    Bioresour Technol; 2014 Dec; 173():82-86. PubMed ID: 25285763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals.
    Kato S; Hashimoto K; Watanabe K
    Environ Microbiol; 2012 Jul; 14(7):1646-54. PubMed ID: 22004041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive Particles Enable Syntrophic Acetate Oxidation between
    Rotaru AE; Calabrese F; Stryhanyuk H; Musat F; Shrestha PM; Weber HS; Snoeyenbos-West OLO; Hall POJ; Richnow HH; Musat N; Thamdrup B
    mBio; 2018 May; 9(3):. PubMed ID: 29717006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Ueki T; Nevin KP; Rotaru AE; Wang LY; Ward JE; Woodard TL; Lovley DR
    mBio; 2018 Jul; 9(4):. PubMed ID: 29991583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial interspecies electron transfer via electric currents through conductive minerals.
    Kato S; Hashimoto K; Watanabe K
    Proc Natl Acad Sci U S A; 2012 Jun; 109(25):10042-6. PubMed ID: 22665802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.
    Yamada C; Kato S; Ueno Y; Ishii M; Igarashi Y
    J Biosci Bioeng; 2015 Jun; 119(6):678-82. PubMed ID: 25488041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs.
    Thiele JH; Zeikus JG
    Appl Environ Microbiol; 1988 Jan; 54(1):20-29. PubMed ID: 16347526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation.
    Sieber JR; McInerney MJ; Gunsalus RP
    Annu Rev Microbiol; 2012; 66():429-52. PubMed ID: 22803797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments.
    Zhang J; Lu Y
    Front Microbiol; 2016; 7():1316. PubMed ID: 27597850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research advances in direct interspecies electron transfer within microbes].
    Lan JY; Jiang HM; Li X
    Ying Yong Sheng Tai Xue Bao; 2021 Jan; 32(1):358-368. PubMed ID: 33477245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plugging in or going wireless: strategies for interspecies electron transfer.
    Shrestha PM; Rotaru AE
    Front Microbiol; 2014; 5():237. PubMed ID: 24904551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction.
    Yin Q; Wu G
    Biotechnol Adv; 2019 Dec; 37(8):107443. PubMed ID: 31476420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covert Cross-Feeding Revealed by Genome-Wide Analysis of Fitness Determinants in a Synthetic Bacterial Mutualism.
    LaSarre B; Deutschbauer AM; Love CE; McKinlay JB
    Appl Environ Microbiol; 2020 Jun; 86(13):. PubMed ID: 32332139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.