These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 26029249)
21. Boreal forest soil CO Song X; Wang G; Hu Z; Ran F; Chen X Sci Total Environ; 2018 Dec; 644():862-872. PubMed ID: 30743884 [TBL] [Abstract][Full Text] [Related]
22. Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia. Loboda TV; Chen D Glob Chang Biol; 2017 Jan; 23(1):138-153. PubMed ID: 27167728 [TBL] [Abstract][Full Text] [Related]
23. Future carbon balance of China's forests under climate change and increasing CO2. Ju WM; Chen JM; Harvey D; Wang S J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919 [TBL] [Abstract][Full Text] [Related]
24. Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions. Loudermilk EL; Scheller RM; Weisberg PJ; Yang J; Dilts TE; Karam SL; Skinner C Glob Chang Biol; 2013 Nov; 19(11):3502-15. PubMed ID: 23821586 [TBL] [Abstract][Full Text] [Related]
25. Carbon dynamics of forests in Washington, U.S.A.: 21st century projections based on climate-driven changes in fire regimes. Raymond CL; McKenzie D Ecol Appl; 2012 Jul; 22(5):1589-611. PubMed ID: 22908716 [TBL] [Abstract][Full Text] [Related]
26. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402 [TBL] [Abstract][Full Text] [Related]
27. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Treat CC; Marushchak ME; Voigt C; Zhang Y; Tan Z; Zhuang Q; Virtanen TA; Räsänen A; Biasi C; Hugelius G; Kaverin D; Miller PA; Stendel M; Romanovsky V; Rivkin F; Martikainen PJ; Shurpali NJ Glob Chang Biol; 2018 Nov; 24(11):5188-5204. PubMed ID: 30101501 [TBL] [Abstract][Full Text] [Related]
28. The human footprint in the carbon cycle of temperate and boreal forests. Magnani F; Mencuccini M; Borghetti M; Berbigier P; Berninger F; Delzon S; Grelle A; Hari P; Jarvis PG; Kolari P; Kowalski AS; Lankreijer H; Law BE; Lindroth A; Loustau D; Manca G; Moncrieff JB; Rayment M; Tedeschi V; Valentini R; Grace J Nature; 2007 Jun; 447(7146):848-50. PubMed ID: 17568744 [TBL] [Abstract][Full Text] [Related]
29. Determining the size of a complete disturbance landscape: multi-scale, continental analysis of forest change. Buma B; Costanza JK; Riitters K Environ Monit Assess; 2017 Nov; 189(12):642. PubMed ID: 29164343 [TBL] [Abstract][Full Text] [Related]
30. Corralling a black swan: natural range of variation in a forest landscape driven by rare, extreme events. Donato DC; Halofsky JS; Reilly MJ Ecol Appl; 2020 Jan; 30(1):e02013. PubMed ID: 31594028 [TBL] [Abstract][Full Text] [Related]
31. Long-term exposure to more frequent disturbances increases baseline carbon in some ecosystems: Mapping and quantifying the disturbance frequency-ecosystem C relationship. Buma B; Thompson T PLoS One; 2019; 14(2):e0212526. PubMed ID: 30789951 [TBL] [Abstract][Full Text] [Related]
32. [Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing'an Mountains, China.]. Huang C; He HS; Liang Y; Wu ZW Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2088-2100. PubMed ID: 30039645 [TBL] [Abstract][Full Text] [Related]
33. [Measurement model of carbon emission from forest fire: a review]. Hu HQ; Wei SJ; Jin S; Sun L Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1423-34. PubMed ID: 22919858 [TBL] [Abstract][Full Text] [Related]
34. Fire catalyzed rapid ecological change in lowland coniferous forests of the Pacific Northwest over the past 14,000 years. Crausbay SD; Higuera PE; Sprugel DG; Brubaker LB Ecology; 2017 Sep; 98(9):2356-2369. PubMed ID: 28500791 [TBL] [Abstract][Full Text] [Related]
35. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Kautz M; Anthoni P; Meddens AJH; Pugh TAM; Arneth A Glob Chang Biol; 2018 May; 24(5):2079-2092. PubMed ID: 29105233 [TBL] [Abstract][Full Text] [Related]
36. Accounting for disturbance history in models: using remote sensing to constrain carbon and nitrogen pool spin-up. Hanan EJ; Tague C; Choate J; Liu M; Kolden C; Adam J Ecol Appl; 2018 Jul; 28(5):1197-1214. PubMed ID: 29573305 [TBL] [Abstract][Full Text] [Related]
38. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Kang S; Kimball JS; Running SW Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407 [TBL] [Abstract][Full Text] [Related]
39. Predicting global change effects on forest biomass and composition in south-central Siberia. Gustafson EJ; Shvidenko AZ; Sturtevant BR; Scheller RM Ecol Appl; 2010 Apr; 20(3):700-15. PubMed ID: 20437957 [TBL] [Abstract][Full Text] [Related]
40. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Sannigrahi S; Pilla F; Basu B; Basu AS; Sarkar K; Chakraborti S; Joshi PK; Zhang Q; Wang Y; Bhatt S; Bhatt A; Jha S; Keesstra S; Roy PS Sci Total Environ; 2020 Jul; 725():138331. PubMed ID: 32302833 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]