These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26029773)

  • 1. Iterative layer-by-layer assembly of polymer-tethered multi-bilayers using maleimide–thiol coupling chemistry.
    Minner DE; Herring VL; Siegel AP; Kimble-Hill A; Johnson MA; Naumann CA
    Soft Matter; 2013 Oct; 9(40):9643-50. PubMed ID: 26029773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of glycoacrylate-based polymer-tethered lipid bilayers on benzophenone-modified substrates.
    Hwang LY; Götz H; Knoll W; Hawker CJ; Frank CW
    Langmuir; 2008 Dec; 24(24):14088-98. PubMed ID: 19360958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing suboptical dynamic structures in lipid bilayer patches formed from free-standing giant unilamellar vesicles.
    Bhatia T; Cornelius F; Ipsen JH
    Nat Protoc; 2017 Aug; 12(8):1563-1575. PubMed ID: 28703789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer-tethered lipid multi-bilayers: a biomembrane-mimicking cell substrate to probe cellular mechano-sensing.
    Minner DE; Rauch P; Käs J; Naumann CA
    Soft Matter; 2014 Feb; 10(8):1189-98. PubMed ID: 24652490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-tethered membranes formed by giant vesicle rupture.
    Chung M; Lowe RD; Chan YH; Ganesan PV; Boxer SG
    J Struct Biol; 2009 Oct; 168(1):190-9. PubMed ID: 19560541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers.
    Kang JY; Choi I; Seo M; Lee JY; Hong S; Gong G; Shin SS; Lee Y; Kim JW
    J Colloid Interface Sci; 2020 Mar; 561():318-326. PubMed ID: 31740134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.
    Morigaki K; Tanimoto Y
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2012-2017. PubMed ID: 29550290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The polymer-supported phospholipid bilayer: tethering as a new approach to substrate-membrane stabilization.
    Naumann C; Prucker O; Lehmann T; Rühe J; Knoll W; Frank CW
    Biomacromolecules; 2002; 3(1):27-35. PubMed ID: 11866552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles.
    Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K
    Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: a quantitative fluorescence microscopy imaging approach.
    Fidorra M; Garcia A; Ipsen JH; Härtel S; Bagatolli LA
    Biochim Biophys Acta; 2009 Oct; 1788(10):2142-9. PubMed ID: 19703410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase segregation of untethered zwitterionic model lipid bilayers observed on mercaptoundecanoic-acid-modified gold by AFM imaging and force mapping.
    Ip S; Li JK; Walker GC
    Langmuir; 2010 Jul; 26(13):11060-70. PubMed ID: 20387821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems.
    Haratake M; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2012 Dec; 100():190-6. PubMed ID: 22766297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Packing density changes of supported lipid bilayers observed by fluorescence microscopy and quartz crystal microbalance-dissipation.
    Kataoka-Hamai C; Higuchi M
    J Phys Chem B; 2014 Sep; 118(37):10934-44. PubMed ID: 25163021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Membrane Stacks on Supported Membranes Composed of Diatom Lipids Induced by Long-Chain Polyamines.
    Gräb O; Abacilar M; Daus F; Geyer A; Steinem C
    Langmuir; 2016 Oct; 32(39):10144-10152. PubMed ID: 27603681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decrease of elastic moduli of DOPC bilayers induced by a macrolide antibiotic, azithromycin.
    Fa N; Lins L; Courtoy PJ; Dufrêne Y; Van Der Smissen P; Brasseur R; Tyteca D; Mingeot-Leclercq MP
    Biochim Biophys Acta; 2007 Jul; 1768(7):1830-8. PubMed ID: 17537401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation of a simulated lipid bilayer vesicle compressed by an atomic force microscope.
    Barlow BM; Bertrand M; Joós B
    Phys Rev E; 2016 Nov; 94(5-1):052408. PubMed ID: 27967024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional tethered lipid bilayers.
    Knoll W; Frank CW; Heibel C; Naumann R; Offenhäusser A; Rühe J; Schmidt EK; Shen WW; Sinner A
    J Biotechnol; 2000 Sep; 74(3):137-58. PubMed ID: 11143794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman Spectroscopy Study of Curvature-Mediated Lipid Packing and Sorting in Single Lipid Vesicles.
    Collard L; Sinjab F; Notingher I
    Biophys J; 2019 Nov; 117(9):1589-1598. PubMed ID: 31587827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide-induced formation of a tethered lipid bilayer membrane on mesoporous silica.
    Wallin M; Choi JH; Kim SO; Cho NJ; Andersson M
    Eur Biophys J; 2015 Feb; 44(1-2):27-36. PubMed ID: 25515600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.