BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26029825)

  • 1. Mutations of the functional ARH1 allele in tumors from ARH1 heterozygous mice and cells affect ARH1 catalytic activity, cell proliferation and tumorigenesis.
    Kato J; Vekhter D; Heath J; Zhu J; Barbieri JT; Moss J
    Oncogenesis; 2015 Jun; 4(6):e151. PubMed ID: 26029825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced sensitivity to cholera toxin in female ADP-ribosylarginine hydrolase (ARH1)-deficient mice.
    Watanabe K; Kato J; Zhu J; Oda H; Ishiwata-Endo H; Moss J
    PLoS One; 2018; 13(11):e0207693. PubMed ID: 30500844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARH Family of ADP-Ribose-Acceptor Hydrolases.
    Ishiwata-Endo H; Kato J; Yamashita S; Chea C; Koike K; Lee DY; Moss J
    Cells; 2022 Nov; 11(23):. PubMed ID: 36497109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.
    Mashimo M; Kato J; Moss J
    DNA Repair (Amst); 2014 Nov; 23():88-94. PubMed ID: 24746921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARH1 in Health and Disease.
    Ishiwata-Endo H; Kato J; Stevens LA; Moss J
    Cancers (Basel); 2020 Feb; 12(2):. PubMed ID: 32092898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis.
    Kato J; Zhu J; Liu C; Stylianou M; Hoffmann V; Lizak MJ; Glasgow CG; Moss J
    Cancer Res; 2011 Aug; 71(15):5327-35. PubMed ID: 21697277
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Kato J; Yamashita S; Ishiwata-Endo H; Oka S; Yu ZX; Liu C; Springer DA; Noguchi A; Peiravi M; Hoffmann V; Lizak MJ; Medearis M; Kim IK; Moss J
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways.
    Bu X; Kato J; Moss J
    Biochem Pharmacol; 2019 Sep; 167():44-49. PubMed ID: 30267646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mono-ADP-ribosyltransferase 1 (
    Ishiwata-Endo H; Kato J; Oda H; Sun J; Yu ZX; Liu C; Springer DA; Dagur P; Lizak MJ; Murphy E; Moss J
    bioRxiv; 2023 Feb; ():. PubMed ID: 36945646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADP-Ribosyl-Acceptor Hydrolase Activities Catalyzed by the ARH Family of Proteins.
    Mashimo M; Moss J
    Methods Mol Biol; 2018; 1813():187-204. PubMed ID: 30097868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD
    Stevens LA; Kato J; Kasamatsu A; Oda H; Lee DY; Moss J
    ACS Chem Biol; 2019 Dec; 14(12):2576-2584. PubMed ID: 31599159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of a TRIM72 ADP-ribosylation cycle in myocardial injury and membrane repair.
    Ishiwata-Endo H; Kato J; Tonouchi A; Chung YW; Sun J; Stevens LA; Zhu J; Aponte AM; Springer DA; San H; Takeda K; Yu ZX; Hoffmann V; Murphy E; Moss J
    JCI Insight; 2018 Nov; 3(22):. PubMed ID: 30429362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells.
    Bu X; Kato J; Hong JA; Merino MJ; Schrump DS; Lund FE; Moss J
    Carcinogenesis; 2018 Feb; 39(2):242-251. PubMed ID: 29228209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrodomain Mac1 of SARS-CoV-2 Nonstructural Protein 3 Hydrolyzes Diverse ADP-ribosylated Substrates.
    Chea C; Lee DY; Kato J; Ishiwata-Endo H; Moss J
    bioRxiv; 2023 Feb; ():. PubMed ID: 36945431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the differences of the ligand binding/unbinding pathways between phosphorylated and non-phosphorylated ARH1 using molecular dynamics simulations.
    Zhu J; Lv Y; Han X; Xu D; Han W
    Sci Rep; 2017 Sep; 7(1):12439. PubMed ID: 28963484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced sensitivity to cholera toxin in ADP-ribosylarginine hydrolase-deficient mice.
    Kato J; Zhu J; Liu C; Moss J
    Mol Cell Biol; 2007 Aug; 27(15):5534-43. PubMed ID: 17526733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-ribosylarginine hydrolases and ADP-ribosyltransferases. Partners in ADP-ribosylation cycles.
    Moss J; Zolkiewska A; Okazaki I
    Adv Exp Med Biol; 1997; 419():25-33. PubMed ID: 9193633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic epidemiology of autosomal recessive hypercholesterolemia in Sicily: Identification by next-generation sequencing of a new kindred.
    Spina R; Noto D; Barbagallo CM; Monastero R; Ingrassia V; Valenti V; Baschi R; Pipitone A; Giammanco A; La Spada MP; Misiano G; Scrimali C; Cefalù AB; Averna MR
    J Clin Lipidol; 2018; 12(1):145-151. PubMed ID: 29153781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.