These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26029883)

  • 1. Unraveling the effect of polymer dots doping in inverted low bandgap organic solar cells.
    Zhang X; Liu C; Li J; He Y; Li Z; Li H; Shen L; Guo W; Ruan S
    Phys Chem Chem Phys; 2015 Jun; 17(24):16086-91. PubMed ID: 26029883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular doping enhances photoconductivity in polymer bulk heterojunction solar cells.
    Zhang Y; Zhou H; Seifter J; Ying L; Mikhailovsky A; Heeger AJ; Bazan GC; Nguyen TQ
    Adv Mater; 2013 Dec; 25(48):7038-44. PubMed ID: 24105644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular design toward efficient polymer solar cells with high polymer content.
    Qian D; Ma W; Li Z; Guo X; Zhang S; Ye L; Ade H; Tan Z; Hou J
    J Am Chem Soc; 2013 Jun; 135(23):8464-7. PubMed ID: 23705764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar conjugated polymers containing 9,10-disubstituted phenanthrene units for efficient polymer solar cells.
    Li G; Kang C; Li C; Lu Z; Zhang J; Gong X; Zhao G; Dong H; Hu W; Bo Z
    Macromol Rapid Commun; 2014 Jun; 35(12):1142-7. PubMed ID: 24700381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance.
    Liao SH; Jhuo HJ; Cheng YS; Chen SA
    Adv Mater; 2013 Sep; 25(34):4766-71. PubMed ID: 23939927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Materials for the active layer of organic photovoltaics: ternary solar cell approach.
    Chen YC; Hsu CY; Lin RY; Ho KC; Lin JT
    ChemSusChem; 2013 Jan; 6(1):20-35. PubMed ID: 23288712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells.
    Heintges GH; van Franeker JJ; Wienk MM; Janssen RA
    Chem Commun (Camb); 2016 Jan; 52(1):92-5. PubMed ID: 26497230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells.
    Clarke TM; Ballantyne A; Shoaee S; Soon YW; Duffy W; Heeney M; McCulloch I; Nelson J; Durrant JR
    Adv Mater; 2010 Dec; 22(46):5287-91. PubMed ID: 20827687
    [No Abstract]   [Full Text] [Related]  

  • 9. Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics.
    Treat ND; Chabinyc ML
    Annu Rev Phys Chem; 2014; 65():59-81. PubMed ID: 24689796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient absorption spectroscopy studies on polythiophene-fullerene bulk heterojunction organic blend films sensitized with a low-bandgap polymer.
    Löslein H; Ameri T; Matt GJ; Koppe M; Egelhaaf HJ; Troeger A; Sgobba V; Guldi DM; Brabec CJ
    Macromol Rapid Commun; 2013 Jul; 34(13):1090-7. PubMed ID: 23821335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Nonfullerene Acceptors for Organic Solar Cells.
    Liu F; Hou T; Xu X; Sun L; Zhou J; Zhao X; Zhang S
    Macromol Rapid Commun; 2018 Feb; 39(3):. PubMed ID: 29154452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-passivated plasmonic nano-pyramids for bulk heterojunction solar cell photocurrent enhancement.
    Kirkeminde A; Retsch M; Wang Q; Xu G; Hui R; Wu J; Ren S
    Nanoscale; 2012 Aug; 4(15):4421-5. PubMed ID: 22695531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ electrochemical deposition and doping of C60 films applied to high-performance inverted organic photovoltaics.
    Gu C; Zhang Z; Sun S; Pan Y; Zhong C; Lv Y; Li M; Ariga K; Huang F; Ma Y
    Adv Mater; 2012 Nov; 24(42):5727-31. PubMed ID: 22976046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends.
    Gevaerts VS; Furlan A; Wienk MM; Turbiez M; Janssen RA
    Adv Mater; 2012 Apr; 24(16):2130-4. PubMed ID: 22438114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indaceno-Based Conjugated Polymers for Polymer Solar Cells.
    Yin Y; Zhang Y; Zhao L
    Macromol Rapid Commun; 2018 Jul; 39(14):e1700697. PubMed ID: 29314375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%.
    Huo L; Liu T; Sun X; Cai Y; Heeger AJ; Sun Y
    Adv Mater; 2015 May; 27(18):2938-44. PubMed ID: 25833465
    [No Abstract]   [Full Text] [Related]  

  • 17. ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells.
    Ho PY; Thiyagu S; Kao SH; Kao CY; Lin CF
    Nanoscale; 2014 Jan; 6(1):466-71. PubMed ID: 24217222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolved phase separation toward balanced charge transport and high efficiency in polymer solar cells.
    Fan H; Zhang M; Guo X; Li Y; Zhan X
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3646-53. PubMed ID: 21815608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Non-Fullerene Polymer Solar Cells Based on a Pair of Donor-Acceptor Materials with Complementary Absorption Properties.
    Lin H; Chen S; Li Z; Lai JY; Yang G; McAfee T; Jiang K; Li Y; Liu Y; Hu H; Zhao J; Ma W; Ade H; Yan H
    Adv Mater; 2015 Dec; 27(45):7299-304. PubMed ID: 26462030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured, active organic-metal junctions for highly efficient charge generation and extraction in polymer-fullerene solar cells.
    Pandey AK; Aljada M; Velusamy M; Burn PL; Meredith P
    Adv Mater; 2012 Feb; 24(8):1055-61. PubMed ID: 22271224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.