These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 26029948)

  • 1. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.
    Ostasevicius V; Janusas G; Milasauskaite I; Zilys M; Kizauskiene L
    Sensors (Basel); 2015 May; 15(6):12594-612. PubMed ID: 26029948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.
    Zizys D; Gaidys R; Dauksevicius R; Ostasevicius V; Daniulaitis V
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibration Energy Harvesting by Means of Piezoelectric Patches: Application to Aircrafts.
    Tommasino D; Moro F; Bernay B; De Lumley Woodyear T; de Pablo Corona E; Doria A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design Approach for Enhancing Higher-Mode Response of a Microcantilever in Vibro-Impacting Mode.
    Migliniene I; Ostasevicius V; Gaidys R; Dauksevicius R; Janusas G; Jurenas V; Krasauskas P
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29231850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Bistability for a Wider Bandwidth in Vibro-Impact Triboelectric Energy Harvesters.
    Qaseem Q; Ibrahim A
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi-Directional Piezoelectric Multi-Modal Energy Harvester Based on Saw-Tooth Cantilever Array.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.
    Žižys D; Gaidys R; Ostaševičius V; Narijauskaitė B
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28448472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices.
    Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; Baù M; Ferrari M; Rouvala M; Ferrari V; Corigliano A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and Experimental Studies on MEMS Variable Cross-Section Cantilever Beam Based Piezoelectric Vibration Energy Harvester.
    He X; Li D; Zhou H; Hui X; Mu X
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34208991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.
    Cho H; Park J; Park JY
    J Nanosci Nanotechnol; 2016 May; 16(5):5252-4. PubMed ID: 27483909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical Modelling and Optimization of a Piezoelectric Cantilever Energy Harvester with In-Span Attachment.
    Homayouni-Amlashi A; Mohand-Ousaid A; Rakotondrabe M
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32545825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.
    Hu J; Jong J; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):386-94. PubMed ID: 20178904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches.
    Xue X; Sun Q; Ma Q; Wang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode.
    Liu H; Cong C; Zhao Q; Ma K
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of a Rope-Driven Piezoelectric Vibration Energy Harvester for Low-Frequency and Wideband Energy Harvesting.
    Zhang J; Lin M; Zhou W; Luo T; Qin L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33804044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.