BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26030010)

  • 1. Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy.
    Zhao Y; MacCormick IJ; Parry DG; Leach S; Beare NA; Harding SP; Zheng Y
    Sci Rep; 2015 Jun; 5():10425. PubMed ID: 26030010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Detection of Vessel Abnormalities on Fluorescein Angiogram in Malarial Retinopathy.
    Zhao Y; MacCormick IJ; Parry DG; Beare NA; Harding SP; Zheng Y
    Sci Rep; 2015 Jun; 5():11154. PubMed ID: 26053690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeatability of automated leakage quantification and microaneurysm identification utilising an analysis platform for ultra-widefield fluorescein angiography.
    Jiang A; Srivastava S; Figueiredo N; Babiuch A; Hu M; Reese J; Ehlers JP
    Br J Ophthalmol; 2020 Apr; 104(4):500-503. PubMed ID: 31320384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity and Compactness Enabled Saliency Estimation for Leakage Detection in Diabetic and Malarial Retinopathy.
    Zhao Y; Zheng Y; Liu Y; Yang J; Zhao Y; Chen D; Wang Y
    IEEE Trans Med Imaging; 2017 Jan; 36(1):51-63. PubMed ID: 27455519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive texture segmentation framework for segmentation of capillary non-perfusion regions in fundus fluorescein angiograms.
    Zheng Y; Kwong MT; Maccormick IJ; Beare NA; Harding SP
    PLoS One; 2014; 9(4):e93624. PubMed ID: 24747681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of blood vessels from red-free and fluorescein retinal images.
    Martinez-Perez ME; Hughes AD; Thom SA; Bharath AA; Parker KH
    Med Image Anal; 2007 Feb; 11(1):47-61. PubMed ID: 17204445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association between fluorescein leakage and optical coherence tomographic characteristics of microaneurysms in diabetic retinopathy.
    Ito H; Horii T; Nishijima K; Sakamoto A; Ota M; Murakami T; Yoshimura N
    Retina; 2013 Apr; 33(4):732-9. PubMed ID: 23190917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy.
    Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP
    Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral malaria-using the retina to study the brain.
    Beare NAV
    Eye (Lond); 2023 Aug; 37(12):2379-2384. PubMed ID: 36788363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated quantitative characterisation of retinal vascular leakage and microaneurysms in ultra-widefield fluorescein angiography.
    Ehlers JP; Wang K; Vasanji A; Hu M; Srivastava SK
    Br J Ophthalmol; 2017 Jun; 101(6):696-699. PubMed ID: 28432113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of temporal information to quantify vascular leakage in fluorescein angiography of the retina.
    Phillips RP; Ross PG; Sharp PF; Forrester JV
    Clin Phys Physiol Meas; 1990; 11 Suppl A():81-5. PubMed ID: 2286051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography.
    Oliver SC; Schwartz SD
    Semin Ophthalmol; 2010; 25(1-2):27-33. PubMed ID: 20507194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal vessel leakage at high altitude.
    Willmann G; Fischer MD; Schatz A; Schommer K; Gekeler F
    JAMA; 2013 Jun; 309(21):2210-2. PubMed ID: 23736726
    [No Abstract]   [Full Text] [Related]  

  • 14. Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase.
    Zhao Y; Liu Y; Wu X; Harding SP; Zheng Y
    PLoS One; 2015; 10(4):e0122332. PubMed ID: 25830353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.
    Rabbani H; Allingham MJ; Mettu PS; Cousins SW; Farsiu S
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(3):1482-92. PubMed ID: 25634978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-year follow-up study of blood-retinal barrier and retinal thickness alterations in patients with type 2 diabetes mellitus and mild nonproliferative diabetic retinopathy.
    Lobo CL; Bernardes RC; Figueira JP; de Abreu JR; Cunha-Vaz JG
    Arch Ophthalmol; 2004 Feb; 122(2):211-7. PubMed ID: 14769598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grading fluorescein angiograms in malarial retinopathy.
    MacCormick IJ; Maude RJ; Beare NA; Borooah S; Glover S; Parry D; Leach S; Molyneux ME; Dhillon B; Lewallen S; Harding SP
    Malar J; 2015 Sep; 14():367. PubMed ID: 26403288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfusion abnormalities in children with cerebral malaria and malarial retinopathy.
    Beare NA; Harding SP; Taylor TE; Lewallen S; Molyneux ME
    J Infect Dis; 2009 Jan; 199(2):263-71. PubMed ID: 18999956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Detection of Malarial Retinopathy in Digital Fundus Images for Improved Diagnosis in Malawian Children with Clinically Defined Cerebral Malaria.
    Joshi V; Agurto C; Barriga S; Nemeth S; Soliz P; MacCormick IJ; Lewallen S; Taylor TE; Harding SP
    Sci Rep; 2017 Feb; 7():42703. PubMed ID: 28198460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal registration of retinal images using self organizing maps.
    Matsopoulos GK; Asvestas PA; Mouravliansky NA; Delibasis KK
    IEEE Trans Med Imaging; 2004 Dec; 23(12):1557-63. PubMed ID: 15575412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.