These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26030147)

  • 1. Reidentification of avian embryonic remains from the cretaceous of mongolia.
    Varricchio DJ; Balanoff AM; Norell MA
    PLoS One; 2015; 10(6):e0128458. PubMed ID: 26030147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A precocial avian embryo from the Lower Cretaceous of China.
    Zhou Z; Zhang F
    Science; 2004 Oct; 306(5696):653. PubMed ID: 15499011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fish-Eating Enantiornithine Bird from the Early Cretaceous of China Provides Evidence of Modern Avian Digestive Features.
    Wang M; Zhou Z; Sullivan C
    Curr Biol; 2016 May; 26(9):1170-6. PubMed ID: 27133872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minute theropod eggs and embryo from the Lower Cretaceous of Thailand and the dinosaur-bird transition.
    Buffetaut E; Grellet-Tinner G; Suteethorn V; Cuny G; Tong H; Kosir A; Cavin L; Chitsing S; Griffiths PJ; Tabouelle J; Le Loeuff J
    Naturwissenschaften; 2005 Oct; 92(10):477-82. PubMed ID: 16158273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A drowned Mesozoic bird breeding colony from the Late Cretaceous of Transylvania.
    Dyke G; Vremir M; Kaiser G; Naish D
    Naturwissenschaften; 2012 Jun; 99(6):435-42. PubMed ID: 22575918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird.
    Zhou Z; Clarke J; Zhang F
    J Anat; 2008 May; 212(5):565-77. PubMed ID: 18397240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the growth pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine bird.
    Wang M; Li Z; Zhou Z
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11470-11475. PubMed ID: 29073073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital preparation of a probable neoceratopsian preserved within an egg, with comments on microstructural anatomy of ornithischian eggshells.
    Balanoff AM; Norell MA; Grellet-Tinner G; Lewin MR
    Naturwissenschaften; 2008 Jun; 95(6):493-500. PubMed ID: 18347769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mummified precocial bird wings in mid-Cretaceous Burmese amber.
    Xing L; McKellar RC; Wang M; Bai M; O'Connor JK; Benton MJ; Zhang J; Wang Y; Tseng K; Lockley MG; Li G; Zhang W; Xu X
    Nat Commun; 2016 Jun; 7():12089. PubMed ID: 27352215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone.
    Bailleul AM; O'Connor J; Zhang S; Li Z; Wang Q; Lamanna MC; Zhu X; Zhou Z
    Nat Commun; 2019 Mar; 10(1):1275. PubMed ID: 30894527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mixed vertebrate eggshell assemblage from the Transylvanian Late Cretaceous.
    Fernández MS; Wang X; Vremir M; Laurent C; Naish D; Kaiser G; Dyke G
    Sci Rep; 2019 Feb; 9(1):1944. PubMed ID: 30760740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perinatal Specimens of Saurolophus angustirostris (Dinosauria: Hadrosauridae), from the Upper Cretaceous of Mongolia.
    Dewaele L; Tsogtbaatar K; Barsbold R; Garcia G; Stein K; Escuillié F; Godefroit P
    PLoS One; 2015; 10(10):e0138806. PubMed ID: 26466354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils.
    O'Connor J; Erickson GM; Norell M; Bailleul AM; Hu H; Zhou Z
    Nat Commun; 2018 Dec; 9(1):5169. PubMed ID: 30518763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird.
    Liu D; Chiappe LM; Serrano F; Habib M; Zhang Y; Meng Q
    PLoS One; 2017; 12(10):e0184637. PubMed ID: 29020077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forelimb Kinematics of Rats Using XROMM, with Implications for Small Eutherians and Their Fossil Relatives.
    Bonnan MF; Shulman J; Varadharajan R; Gilbert C; Wilkes M; Horner A; Brainerd E
    PLoS One; 2016; 11(3):e0149377. PubMed ID: 26933950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.
    Knoll F; Chiappe LM; Sanchez S; Garwood RJ; Edwards NP; Wogelius RA; Sellers WI; Manning PL; Ortega F; Serrano FJ; Marugán-Lobón J; Cuesta E; Escaso F; Sanz JL
    Nat Commun; 2018 Mar; 9(1):937. PubMed ID: 29507288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryonic eggshell thickness erosion: A literature survey re-assessing embryo-induced eggshell thinning in birds.
    Orłowski G; Hałupka L
    Environ Pollut; 2015 Oct; 205():218-24. PubMed ID: 26074163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital restoration of the pectoral girdles of two Early Cretaceous birds and implications for early-flight evolution.
    Wang S; Ma Y; Wu Q; Wang M; Hu D; Sullivan C; Xu X
    Elife; 2022 Mar; 11():. PubMed ID: 35356889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism and energetics of avian embryos.
    Vleck CM; Vleck D
    J Exp Zool Suppl; 1987; 1():111-25. PubMed ID: 3298529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An exquisitely preserved
    Xing L; Niu K; Ma W; Zelenitsky DK; Yang TR; Brusatte SL
    iScience; 2022 Jan; 25(1):103516. PubMed ID: 35106456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.