These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26030362)

  • 1. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity.
    Nissim WG; Hasbroucq S; Kadri H; Pitre FE; Labrecque M
    Int J Phytoremediation; 2015; 17(8):745-52. PubMed ID: 26030362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.
    Courchesne F; Turmel MC; Cloutier-Hurteau B; Constantineau S; Munro L; Labrecque M
    Int J Phytoremediation; 2017 Jun; 19(6):545-554. PubMed ID: 27996300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of phytoremediation capability of selected plant species for given trace elements.
    Fischerová Z; Tlustos P; Jirina Száková ; Kornelie Sichorová
    Environ Pollut; 2006 Nov; 144(1):93-100. PubMed ID: 16516363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate.
    Guidi Nissim W; Palm E; Mancuso S; Azzarello E
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):9114-9131. PubMed ID: 29340860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: evaluation of the phytostabilization potential.
    Testiati E; Parinet J; Massiani C; Laffont-Schwob I; Rabier J; Pfeifer HR; Lenoble V; Masotti V; Prudent P
    J Hazard Mater; 2013 Mar; 248-249():131-41. PubMed ID: 23352904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia.
    Ghazaryan K; Movsesyan H; Ghazaryan N; Watts BA
    Environ Pollut; 2019 Jun; 249():491-501. PubMed ID: 30928521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of toxic trace elements in soil and water.
    LeDuc DL; Terry N
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):514-20. PubMed ID: 15883830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.
    Shaheen SM; Rinklebe J
    Environ Geochem Health; 2015 Dec; 37(6):953-67. PubMed ID: 26040974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoextraction of risk elements by willow and poplar trees.
    Kacálková L; Tlustoš P; Száková J
    Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.
    Lorestani B; Yousefi N; Cheraghi M; Farmany A
    Environ Monit Assess; 2013 Dec; 185(12):10217-23. PubMed ID: 23856813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.
    Boechat CL; Pistóia VC; Gianelo C; Camargo FA
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2371-80. PubMed ID: 26411450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks.
    Pérez-de-Mora A; Madejón P; Burgos P; Cabrera F; Lepp NW; Madejón E
    Environ Pollut; 2011 Oct; 159(10):3018-27. PubMed ID: 21561696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
    Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.
    Kumari A; Lal B; Rai UN
    Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field assessment of trace element phytoextraction by different
    Guidi Nissim W; Labrecque M
    Int J Phytoremediation; 2023; 25(3):283-292. PubMed ID: 35605106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil.
    Mleczek M; Rutkowski P; Goliński P; Kaczmarek Z; Szentner K; Waliszewska B; Stolarski M; Szczukowski S
    Int J Phytoremediation; 2017 Feb; 19(2):121-132. PubMed ID: 27494361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofortification and phytoremediation.
    Zhao FJ; McGrath SP
    Curr Opin Plant Biol; 2009 Jun; 12(3):373-80. PubMed ID: 19473871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.