BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26030408)

  • 1. Adaptive Molecular Evolution of PHYE in Primulina, a Karst Cave Plant.
    Tao J; Qi Q; Kang M; Huang H
    PLoS One; 2015; 10(6):e0127821. PubMed ID: 26030408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive molecular evolution of the two-pore channel 1 gene TPC1 in the karst-adapted genus Primulina (Gesneriaceae).
    Tao J; Feng C; Ai B; Kang M
    Ann Bot; 2016 Dec; 118(7):1257-1268. PubMed ID: 27582362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome resources of eleven Primulina species, a group of 'stone plants' from a biodiversity hot spot.
    Ai B; Gao Y; Zhang X; Tao J; Kang M; Huang H
    Mol Ecol Resour; 2015 May; 15(3):619-32. PubMed ID: 25243665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural selection on PHYE by latitude in the Japanese archipelago: insight from locus specific phylogeographic structure in Arcterica nana (Ericaceae).
    Ikeda H; Setoguchi H
    Mol Ecol; 2010 Jul; 19(13):2779-91. PubMed ID: 20546133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genome of a cave plant, Primulina huaijiensis, provides insights into adaptation to limestone karst habitats.
    Feng C; Wang J; Wu L; Kong H; Yang L; Feng C; Wang K; Rausher M; Kang M
    New Phytol; 2020 Aug; 227(4):1249-1263. PubMed ID: 32274804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China.
    Kong H; Condamine FL; Harris AJ; Chen J; Pan B; Möller M; Hoang VS; Kang M
    Mol Ecol; 2017 Nov; 26(22):6414-6429. PubMed ID: 28960701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of phytochromes in Cardamine nipponica (Brassicaceae) suggests the involvement of PHYE in local adaptation.
    Ikeda H; Fujii N; Setoguchi H
    Genetics; 2009 Jun; 182(2):603-14. PubMed ID: 19363127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms.
    Mathews S; Burleigh JG; Donoghue MJ
    Mol Biol Evol; 2003 Jul; 20(7):1087-97. PubMed ID: 12777523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular systematics of Chiritopsis-like Primulina (Gesneriaceae): one new species, one new name, two new combinations, and new synonyms.
    Xu WB; Chang H; Huang J; Chung KF
    Bot Stud; 2019 Aug; 60(1):18. PubMed ID: 31468230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive and nonadaptive genome size evolution in Karst endemic flora of China.
    Kang M; Tao J; Wang J; Ren C; Qi Q; Xiang QY; Huang H
    New Phytol; 2014 Jun; 202(4):1371-1381. PubMed ID: 24533910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastomes of limestone karst gesneriad genera Petrocodon and Primulina, and the comparative plastid phylogenomics of Gesneriaceae.
    Hsieh CL; Xu WB; Chung KF
    Sci Rep; 2022 Sep; 12(1):15800. PubMed ID: 36138079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three new species of Primulina (Gesneriaceae) from limestone karsts of China based on morphological and molecular evidence.
    Guo J; Pan B; Liu J; Xu WB; Chung KF
    Bot Stud; 2015 Dec; 56(1):34. PubMed ID: 28510843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primulina cardaminifolia (Gesneriaceae), a rare new species from limestone areas in Guangxi, China.
    Xu WB; Liu Y; Kono Y; Chang H; Peng CI; Chung KF
    Bot Stud; 2013 Dec; 54(1):19. PubMed ID: 28510862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive evolution in the GAF domain of phytochromes in gymnosperms.
    Wang J; Yan B; Chen G; Su Y; Wang T
    Biochem Genet; 2010 Apr; 48(3-4):236-47. PubMed ID: 19967442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen limitation as a driver of genome size evolution in a group of karst plants.
    Kang M; Wang J; Huang H
    Sci Rep; 2015 Jun; 5():11636. PubMed ID: 26109237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome gene expression and phylogenetic analysis in the short-day plant Pharbitis nil (Convolvulaceae): Differential regulation by light and an endogenous clock.
    Zheng CC; Potter D; O'Neill SD
    Am J Bot; 2009 Jul; 96(7):1319-36. PubMed ID: 21628281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum likelihood analysis of adaptive evolution in HIV-1 gp120 env gene.
    Yang Z
    Pac Symp Biocomput; 2001; ():226-37. PubMed ID: 11262943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity of the endangered Chinese endemic herb Primulina tabacum (Gesneriaceae) revealed by amplified fragment length polymorphism (AFLP).
    Ni X; Huang Y; Wu L; Zhou R; Deng S; Wu D; Wang B; Su G; Tang T; Shi S
    Genetica; 2006 May; 127(1-3):177-83. PubMed ID: 16850222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic Insights into Adaptation to Karst Limestone and Incipient Speciation in East Asian
    Cao Y; Almeida-Silva F; Zhang WP; Ding YM; Bai D; Bai WN; Zhang BW; Van de Peer Y; Zhang DY
    Mol Biol Evol; 2023 May; 40(6):msad121. PubMed ID: 37325551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.