BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26030533)

  • 1. Broad spectral excitation of opsin for enhanced stimulation of cells.
    Satpathy S; Batabyal S; Dhakal KR; Lin J; Kim YT; Mohanty SK
    Opt Lett; 2015 Jun; 40(11):2465-8. PubMed ID: 26030533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broad-Band Activatable White-Opsin.
    Batabyal S; Cervenka G; Ha JH; Kim YT; Mohanty S
    PLoS One; 2015; 10(9):e0136958. PubMed ID: 26360377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation.
    Batabyal S; Cervenka G; Birch D; Kim YT; Mohanty S
    Sci Rep; 2015 Dec; 5():17857. PubMed ID: 26658483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical prediction of broadband ambient light optogenetic vision restoration with ChRmine and its mutants.
    Bansal H; Pyari G; Roy S
    Sci Rep; 2024 May; 14(1):11642. PubMed ID: 38773346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetics: opsins and optical interfaces in neuroscience.
    Adamantidis AR; Zhang F; de Lecea L; Deisseroth K
    Cold Spring Harb Protoc; 2014 Aug; 2014(8):815-22. PubMed ID: 25086025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A live cell assay of GPCR coupling allows identification of optogenetic tools for controlling Go and Gi signaling.
    Ballister ER; Rodgers J; Martial F; Lucas RJ
    BMC Biol; 2018 Jan; 16(1):10. PubMed ID: 29338718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opsins for vision restoration.
    Simon CJ; Sahel JA; Duebel J; Herlitze S; Dalkara D
    Biochem Biophys Res Commun; 2020 Jun; 527(2):325-330. PubMed ID: 31982136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 9. Optogenetic Potentials of Diverse Animal Opsins: Parapinopsin, Peropsin, LWS Bistable Opsin.
    Koyanagi M; Saito T; Wada S; Nagata T; Kawano-Yamashita E; Terakita A
    Adv Exp Med Biol; 2021; 1293():141-151. PubMed ID: 33398811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons.
    Vierock J; Rodriguez-Rozada S; Dieter A; Pieper F; Sims R; Tenedini F; Bergs ACF; Bendifallah I; Zhou F; Zeitzschel N; Ahlbeck J; Augustin S; Sauter K; Papagiakoumou E; Gottschalk A; Soba P; Emiliani V; Engel AK; Hegemann P; Wiegert JS
    Nat Commun; 2021 Jul; 12(1):4527. PubMed ID: 34312384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans.
    Shen Y; Campbell RE; Côté DC; Paquet ME
    Front Neural Circuits; 2020; 14():41. PubMed ID: 32760252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating signalling lifetime to optimise a prototypical animal opsin for optogenetic applications.
    Rodgers J; Wright P; Ballister ER; Hughes RB; Storchi R; Wynne J; Martial FP; Lucas RJ
    Pflugers Arch; 2023 Dec; 475(12):1387-1407. PubMed ID: 38036775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of animal opsin-based pigments and their optogenetic potential.
    Koyanagi M; Terakita A
    Biochim Biophys Acta; 2014 May; 1837(5):710-6. PubMed ID: 24041647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of discontinuous blue light stimulation on the electrophysiological properties of neurons lacking opsin expression in vitro: Implications for optogenetic experiments.
    Lightning A; Bourzeix M; Beurrier C; Kuczewski N
    Eur J Neurosci; 2023 Mar; 57(6):885-899. PubMed ID: 36726326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.
    Lin JY; Knutsen PM; Muller A; Kleinfeld D; Tsien RY
    Nat Neurosci; 2013 Oct; 16(10):1499-508. PubMed ID: 23995068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamprey Parapinopsin ("UVLamP"): a Bistable UV-Sensitive Optogenetic Switch for Ultrafast Control of GPCR Pathways.
    Eickelbeck D; Rudack T; Tennigkeit SA; Surdin T; Karapinar R; Schwitalla JC; Mücher B; Shulman M; Scherlo M; Althoff P; Mark MD; Gerwert K; Herlitze S
    Chembiochem; 2020 Mar; 21(5):612-617. PubMed ID: 31468691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins.
    Forli A; Pisoni M; Printz Y; Yizhar O; Fellin T
    Elife; 2021 May; 10():. PubMed ID: 34032211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.