These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 26030574)
1. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations. El Gawhary O Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574 [TBL] [Abstract][Full Text] [Related]
2. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials. Rahbar K; Faez K; Attaran Kakhki E J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854 [TBL] [Abstract][Full Text] [Related]
5. Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils. Mahajan VN Appl Opt; 1995 Dec; 34(34):8057-9. PubMed ID: 21068908 [TBL] [Abstract][Full Text] [Related]
6. Orthonormal polynomials in wavefront analysis: analytical solution. Mahajan VN; Dai GM J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271 [TBL] [Abstract][Full Text] [Related]
7. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system. Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023 [TBL] [Abstract][Full Text] [Related]
8. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]
9. New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion. Pogosyan GS; Wolf KB; Yakhno A J Opt Soc Am A Opt Image Sci Vis; 2017 Oct; 34(10):1844-1848. PubMed ID: 29036055 [TBL] [Abstract][Full Text] [Related]
10. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils. Mahajan VN Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284 [TBL] [Abstract][Full Text] [Related]
11. Zernike annular polynomials and optical aberrations of systems with annular pupils. Mahajan VN Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042 [TBL] [Abstract][Full Text] [Related]
12. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient. Sun W; Wang S; He X; Xu B J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1140-1148. PubMed ID: 30110306 [TBL] [Abstract][Full Text] [Related]
13. Nijboer-Zernike's aberration theory: computational achievements via Tchebychev's polynomials approximation theory. Borghi R J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):C253-C265. PubMed ID: 36520775 [TBL] [Abstract][Full Text] [Related]
14. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts. Mahajan VN; Aftab M Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675 [TBL] [Abstract][Full Text] [Related]
15. Modal-based phase retrieval for adaptive optics. Antonello J; Verhaegen M J Opt Soc Am A Opt Image Sci Vis; 2015 Jun; 32(6):1160-70. PubMed ID: 26367051 [TBL] [Abstract][Full Text] [Related]
16. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials. Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449 [TBL] [Abstract][Full Text] [Related]
17. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration. Hasan SY; Shaker AS Appl Opt; 2012 Dec; 51(35):8490-7. PubMed ID: 23262546 [TBL] [Abstract][Full Text] [Related]
18. Zernike monomials in wide field of view optical designs. Johnson TP; Sasian J Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327 [TBL] [Abstract][Full Text] [Related]
19. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture. Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259 [TBL] [Abstract][Full Text] [Related]
20. Zernike circle polynomials and optical aberrations of systems with circular pupils. Mahajan VN Appl Opt; 1994 Dec; 33(34):8121. PubMed ID: 20963040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]