These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26030574)

  • 21. Zernike olivary polynomials for applications with olivary pupils.
    Zheng Y; Sun S; Li Y
    Appl Opt; 2016 Apr; 55(12):3116-25. PubMed ID: 27140076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fresnel transform as a projection onto a Nijboer-Zernike basis set.
    Wu Y; Hillenbrand M; Zhao L; Sinzinger S; Kelly DP
    Opt Lett; 2015 Aug; 40(15):3472-5. PubMed ID: 26258335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils.
    Díaz JA; Mahajan VN
    Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double Zernike expansion of the optical aberration function from its power series expansion.
    Braat JJ; Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1213-22. PubMed ID: 24323109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zernike-like systems in polygons and polygonal facets.
    Ferreira C; López JL; Navarro R; Sinusía EP
    Appl Opt; 2015 Jul; 54(21):6575-83. PubMed ID: 26367845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recursive formula to compute Zernike radial polynomials.
    Honarvar Shakibaei B; Paramesran R
    Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modal wavefront reconstruction for radial shearing interferometer with lateral shear.
    Gu N; Huang L; Yang Z; Luo Q; Rao C
    Opt Lett; 2011 Sep; 36(18):3693-5. PubMed ID: 21931435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-compensation of Zernike aberrations in Gaussian beam optics.
    Czuchnowski J; Prevedel R
    Opt Lett; 2021 Jul; 46(14):3480-3483. PubMed ID: 34264243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strehl ratio and amplitude-weighted generalized orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TP
    Appl Opt; 2017 Mar; 56(8):2336-2345. PubMed ID: 28375280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.
    Mahajan VN
    Appl Opt; 2010 Dec; 49(36):6924-9. PubMed ID: 21173827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modal-based phase retrieval using Gaussian radial basis functions.
    Piscaer PJ; Gupta A; Soloviev O; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1233-1242. PubMed ID: 30110317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variational calculus approach to Zernike polynomials with application to FCS.
    Gligonov I; Enderlein J
    Biophys J; 2024 Aug; ():. PubMed ID: 39164968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical construction and perturbation analysis of Zernike discrete orthogonal points.
    Shi Z; Sui Y; Liu Z; Peng J; Yang H
    Appl Opt; 2012 Jun; 51(18):4210-4. PubMed ID: 22722299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial impulse responses from a flexible baffled circular piston.
    Aarts RM; Janssen AJ
    J Acoust Soc Am; 2011 May; 129(5):2952-9. PubMed ID: 21568398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of the elastic modes of a circular plate in wavefront correction of the adaptive optics and the active optics.
    Wang H; Zhang M; Gao J; Lan Y; Zuo Y; Zheng X
    Opt Express; 2021 Jan; 29(2):1109-1124. PubMed ID: 33726333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical method for the transformation of Zernike polynomial coefficients for scaled, rotated, and translated pupils.
    Li L; Zhang B; Xu Y; Wang D
    Appl Opt; 2018 Dec; 57(34):F22-F30. PubMed ID: 30645277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modal integration of Hartmann and Shack-Hartmann patterns.
    Hernández-Gómez G; Malacara-Hernández Z; Malacara-Doblado D; Díaz-Uribe R; Malacara-Hernández D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):846-51. PubMed ID: 24695148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extended Nijboer-Zernike approach for the computation of optical point-spread functions.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):849-57. PubMed ID: 11999961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.