These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 2603059)
1. Biomechanical evaluation of spinal fixation devices. Part III. Stability provided by six spinal fixation devices and interbody bone graft. Abumi K; Panjabi MM; Duranceau J Spine (Phila Pa 1976); 1989 Nov; 14(11):1249-55. PubMed ID: 2603059 [TBL] [Abstract][Full Text] [Related]
2. A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system. Chang KW; Dewei Z; McAfee PC; Warden KE; Farey ID; Gurr KR J Spinal Disord; 1988; 1(4):257-66. PubMed ID: 2980253 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical evaluation of spinal fixation devices: II. Stability provided by eight internal fixation devices. Panjabi MM; Abumi K; Duranceau J; Crisco JJ Spine (Phila Pa 1976); 1988 Oct; 13(10):1135-40. PubMed ID: 3206271 [TBL] [Abstract][Full Text] [Related]
4. Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Brodke DS; Gollogly S; Bachus KN; Alexander Mohr R; Nguyen BK Spine (Phila Pa 1976); 2003 Aug; 28(16):1794-801. PubMed ID: 12923465 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Cunningham BW; Gordon JD; Dmitriev AE; Hu N; McAfee PC Spine (Phila Pa 1976); 2003 Oct; 28(20):S110-7. PubMed ID: 14560182 [TBL] [Abstract][Full Text] [Related]
7. Anterior spinal fixators. A biomechanical in vitro study. Zdeblick TA; Warden KE; Zou D; McAfee PC; Abitbol JJ Spine (Phila Pa 1976); 1993 Mar; 18(4):513-7. PubMed ID: 8470014 [TBL] [Abstract][Full Text] [Related]
8. In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model. Kallemeier PM; Beaubien BP; Buttermann GR; Polga DJ; Wood KB J Spinal Disord Tech; 2008 May; 21(3):216-24. PubMed ID: 18458594 [TBL] [Abstract][Full Text] [Related]
9. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study. Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S Spine J; 2006; 6(6):648-58. PubMed ID: 17088195 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Gerber M; Crawford NR; Chamberlain RH; Fifield MS; LeHuec JC; Dickman CA Spine (Phila Pa 1976); 2006 Apr; 31(7):762-8. PubMed ID: 16582849 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Singh K; Vaccaro AR; Kim J; Lorenz EP; Lim TH; An HS Spine (Phila Pa 1976); 2003 Oct; 28(20):2352-8; discussion 2358. PubMed ID: 14560082 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. An HS; Lim TH; You JW; Hong JH; Eck J; McGrady L Spine (Phila Pa 1976); 1995 Sep; 20(18):1979-83. PubMed ID: 8578371 [TBL] [Abstract][Full Text] [Related]
14. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament. McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. Gurr KR; McAfee PC; Shih CM J Bone Joint Surg Am; 1988 Sep; 70(8):1182-91. PubMed ID: 3417703 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical evaluation of surgical constructs for stabilization of cervical teardrop fractures. Ianuzzi A; Zambrano I; Tataria J; Ameerally A; Agulnick M; Goodwin JS; Stephen M; Khalsa PS Spine J; 2006; 6(5):514-23. PubMed ID: 16934720 [TBL] [Abstract][Full Text] [Related]
17. [A biomechanical study on the stability of the injured thoraco-lumbar spine fixed with spinal instrumentation]. Abumi K Nihon Seikeigeka Gakkai Zasshi; 1988 Mar; 62(3):205-16. PubMed ID: 3392449 [TBL] [Abstract][Full Text] [Related]
18. Augmentation of anterior lumbar interbody fusion with anterior pedicle screw fixation: demonstration of novel constructs and evaluation of biomechanical stability in cadaveric specimens. Karim A; Mukherjee D; Ankem M; Gonzalez-Cruz J; Smith D; Nanda A Neurosurgery; 2006 Mar; 58(3):522-7; discussion 522-7. PubMed ID: 16528193 [TBL] [Abstract][Full Text] [Related]
19. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis. Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203 [TBL] [Abstract][Full Text] [Related]
20. Anterior cervical discectomy and fusion with a locked plate and wedged graft effectively stabilizes flexion-distraction stage-3 injury in the lower cervical spine: a biomechanical study. Paxinos O; Ghanayem AJ; Zindrick MR; Voronov LI; Havey RM; Carandang G; Hadjipavlou A; Patwardhan AG Spine (Phila Pa 1976); 2009 Jan; 34(1):E9-15. PubMed ID: 19127153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]