These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 26030654)

  • 1. Large anisotropic deformation of skyrmions in strained crystal.
    Shibata K; Iwasaki J; Kanazawa N; Aizawa S; Tanigaki T; Shirai M; Nakajima T; Kubota M; Kawasaki M; Park HS; Shindo D; Nagaosa N; Tokura Y
    Nat Nanotechnol; 2015 Jul; 10(7):589-92. PubMed ID: 26030654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet.
    Karube K; White JS; Morikawa D; Dewhurst CD; Cubitt R; Kikkawa A; Yu X; Tokunaga Y; Arima TH; Rønnow HM; Tokura Y; Taguchi Y
    Sci Adv; 2018 Sep; 4(9):eaar7043. PubMed ID: 30225364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation from Magnetic Soliton to Skyrmion in a Monoaxial Chiral Magnet.
    Li L; Song D; Wang W; Zheng F; Kovács A; Tian M; Dunin-Borkowski RE; Du H
    Adv Mater; 2023 Apr; 35(16):e2209798. PubMed ID: 36573473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling.
    Ba Y; Zhuang S; Zhang Y; Wang Y; Gao Y; Zhou H; Chen M; Sun W; Liu Q; Chai G; Ma J; Zhang Y; Tian H; Du H; Jiang W; Nan C; Hu JM; Zhao Y
    Nat Commun; 2021 Jan; 12(1):322. PubMed ID: 33436572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helical and skyrmion lattice phases in three-dimensional chiral magnets: Effect of anisotropic interactions.
    Chen J; Cai WP; Qin MH; Dong S; Lu XB; Gao XS; Liu JM
    Sci Rep; 2017 Aug; 7(1):7392. PubMed ID: 28785054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Chemical Vapor Deposition Growth of Cubic FeGe Nanowires That Support Stabilized Magnetic Skyrmions.
    Stolt MJ; Li ZA; Phillips B; Song D; Mathur N; Dunin-Borkowski RE; Jin S
    Nano Lett; 2017 Jan; 17(1):508-514. PubMed ID: 27936792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-Driven Dzyaloshinskii-Moriya Interaction for Room-Temperature Magnetic Skyrmions.
    Zhang Y; Liu J; Dong Y; Wu S; Zhang J; Wang J; Lu J; Rückriegel A; Wang H; Duine R; Yu H; Luo Z; Shen K; Zhang J
    Phys Rev Lett; 2021 Sep; 127(11):117204. PubMed ID: 34558947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometric phase analysis of magnetic skyrmion lattices in Lorentz transmission electron microscopy images.
    Denneulin T; Kovács A; Boltje R; Kiselev NS; Dunin-Borkowski RE
    Sci Rep; 2024 May; 14(1):12286. PubMed ID: 38811716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skyrmion-skyrmion interaction in a magnetic film.
    Capic D; Garanin DA; Chudnovsky EM
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32526724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-space anisotropic dielectric response in a multiferroic skyrmion lattice.
    Chu P; Xie YL; Zhang Y; Chen JP; Chen DP; Yan ZB; Liu JM
    Sci Rep; 2015 Feb; 5():8318. PubMed ID: 25661786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet.
    Peng L; Takagi R; Koshibae W; Shibata K; Nakajima K; Arima TH; Nagaosa N; Seki S; Yu X; Tokura Y
    Nat Nanotechnol; 2020 Mar; 15(3):181-186. PubMed ID: 31959930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-induced magnetic phase transition, magnetic anisotropy switching and bilayer antiferromagnetic skyrmions in van der Waals magnet CrTe
    Feng D; Shen Z; Xue Y; Guan Z; Xiao R; Song C
    Nanoscale; 2023 Jan; 15(4):1561-1567. PubMed ID: 36537877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet.
    Khanh ND; Nakajima T; Yu X; Gao S; Shibata K; Hirschberger M; Yamasaki Y; Sagayama H; Nakao H; Peng L; Nakajima K; Takagi R; Arima TH; Tokura Y; Seki S
    Nat Nanotechnol; 2020 Jun; 15(6):444-449. PubMed ID: 32424341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Field Bi-Skyrmion Formation in a Noncentrosymmetric Chimney Ladder Ferromagnet.
    Takagi R; Yu XZ; White JS; Shibata K; Kaneko Y; Tatara G; Rønnow HM; Tokura Y; Seki S
    Phys Rev Lett; 2018 Jan; 120(3):037203. PubMed ID: 29400522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Direct-Write Skyrmion Nanolithography.
    Ognev AV; Kolesnikov AG; Kim YJ; Cha IH; Sadovnikov AV; Nikitov SA; Soldatov IV; Talapatra A; Mohanty J; Mruczkiewicz M; Ge Y; Kerber N; Dittrich F; Virnau P; Kläui M; Kim YK; Samardak AS
    ACS Nano; 2020 Nov; 14(11):14960-14970. PubMed ID: 33152236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-Driven Zero-Field Near-10 nm Skyrmions in Two-Dimensional van der Waals Heterostructures.
    Li D; Haldar S; Heinze S
    Nano Lett; 2022 Sep; 22(18):7706-7713. PubMed ID: 36121771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures.
    Boulle O; Vogel J; Yang H; Pizzini S; de Souza Chaves D; Locatelli A; Menteş TO; Sala A; Buda-Prejbeanu LD; Klein O; Belmeguenai M; Roussigné Y; Stashkevich A; Chérif SM; Aballe L; Foerster M; Chshiev M; Auffret S; Miron IM; Gaudin G
    Nat Nanotechnol; 2016 May; 11(5):449-54. PubMed ID: 26809057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks.
    Zhao X; Jin C; Wang C; Du H; Zang J; Tian M; Che R; Zhang Y
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4918-23. PubMed ID: 27051067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization and Reversal of Skyrmion Lattice in Ta/CoFeB/MgO Multilayers.
    Qin Z; Wang Y; Zhu S; Jin C; Fu J; Liu Q; Cao J
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36556-36563. PubMed ID: 30277060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy.
    Hervé M; Dupé B; Lopes R; Böttcher M; Martins MD; Balashov T; Gerhard L; Sinova J; Wulfhekel W
    Nat Commun; 2018 Mar; 9(1):1015. PubMed ID: 29523833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.