These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 26030670)
1. Enhanced Visible Photovoltaic Response of TiO₂ Thin Film with an All-Inorganic Donor-Acceptor Type Polyoxometalate. Li JS; Sang XJ; Chen WL; Zhang LC; Zhu ZM; Ma TY; Su ZM; Wang EB ACS Appl Mater Interfaces; 2015 Jun; 7(24):13714-21. PubMed ID: 26030670 [TBL] [Abstract][Full Text] [Related]
2. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
3. Heterointerface Connection with Multiple Hydrogen-Bonding in Z-Scheme Heterojunction SiW Zhang P; Wang T; Ma H; Ma R; Xia Z; Yang Q; Yang X; Xie G; Chen S Inorg Chem; 2023 Dec; 62(49):20401-20411. PubMed ID: 38073496 [TBL] [Abstract][Full Text] [Related]
4. Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100% exposed {101} facets as effective light scattering layer. Zhou Y; Wang X; Wang H; Song Y; Fang L; Ye N; Wang L Dalton Trans; 2014 Mar; 43(12):4711-9. PubMed ID: 24468963 [TBL] [Abstract][Full Text] [Related]
5. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications. Stalder R; Xie D; Islam A; Han L; Reynolds JR; Schanze KS ACS Appl Mater Interfaces; 2014 Jun; 6(11):8715-22. PubMed ID: 24807377 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of limiting factors affecting photovoltaic performance of low-temperature-processed TiO₂ films in dye-sensitized solar cells. Lee TY; Kim HS; Park NG Chemphyschem; 2014 Apr; 15(6):1098-105. PubMed ID: 24470338 [TBL] [Abstract][Full Text] [Related]
7. Enhanced charge transport and photovoltaic performance induced by incorporating rare-earth phosphor into organic-inorganic hybrid solar cells. Chen Z; Li Q; Chen C; Du J; Tong J; Jin X; Li Y; Yuan Y; Qin Y; Wei T; Sun W Phys Chem Chem Phys; 2014 Nov; 16(44):24499-508. PubMed ID: 25307965 [TBL] [Abstract][Full Text] [Related]
8. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Potscavage WJ; Sharma A; Kippelen B Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653 [TBL] [Abstract][Full Text] [Related]
9. Two New Armtype Polyoxometalates Grafted on Titanium Dioxide Films: Towards Enhanced Photoelectrochemical Performance. Sun H; Guo LY; Li JS; Bai JP; Su F; Zhang LC; Sang XJ; You WS; Zhu ZM ChemSusChem; 2016 May; 9(10):1125-33. PubMed ID: 27098260 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of TiO2 barrier layers for dye-sensitized solar cells. Zheng Y; Klankowski S; Yang Y; Li J ACS Appl Mater Interfaces; 2014 Jul; 6(13):10679-86. PubMed ID: 24927111 [TBL] [Abstract][Full Text] [Related]
11. A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode. Srinivasa Rao S; Punnoose D; Venkata Tulasivarma Ch; Pavan Kumar CH; Gopi CV; Kim SK; Kim HJ Dalton Trans; 2015 Feb; 44(5):2447-55. PubMed ID: 25556975 [TBL] [Abstract][Full Text] [Related]
13. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related]
14. Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells. Wang W; Zhang H; Wang R; Feng M; Chen Y Nanoscale; 2014 Feb; 6(4):2390-6. PubMed ID: 24435106 [TBL] [Abstract][Full Text] [Related]
15. A Strategy for Breaking Polyoxometalate-based MOFs To Obtain High Loading Amounts of Nanosized Polyoxometalate Clusters to Improve the Performance of Dye-sensitized Solar Cells. Zheng X; Chen W; Chen L; Wang Y; Guo X; Wang J; Wang E Chemistry; 2017 Jul; 23(37):8871-8878. PubMed ID: 28337807 [TBL] [Abstract][Full Text] [Related]
16. Constructing organic D-A-π-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment. Pei K; Wu Y; Wu W; Zhang Q; Chen B; Tian H; Zhu W Chemistry; 2012 Jun; 18(26):8190-200. PubMed ID: 22615266 [TBL] [Abstract][Full Text] [Related]
17. Rethinking band bending at the P3HT-TiO(2) interface. Haring AJ; Ahrenholtz SR; Morris AJ ACS Appl Mater Interfaces; 2014 Mar; 6(6):4394-401. PubMed ID: 24571734 [TBL] [Abstract][Full Text] [Related]
18. Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film. Kim YJ; Lee YH; Lee MH; Kim HJ; Pan JH; Lim GI; Choi YS; Kim K; Park NG; Lee C; Lee WI Langmuir; 2008 Nov; 24(22):13225-30. PubMed ID: 18922027 [TBL] [Abstract][Full Text] [Related]
19. Tailoring of energy levels in D-π-A organic dyes via fluorination of acceptor units for efficient dye-sensitized solar cells. Lee MW; Kim JY; Son HJ; Kim JY; Kim B; Kim H; Lee DK; Kim K; Lee DH; Ko MJ Sci Rep; 2015 Jan; 5():7711. PubMed ID: 25591722 [TBL] [Abstract][Full Text] [Related]
20. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. Dai G; Zhao L; Li J; Wan L; Hu F; Xu Z; Dong B; Lu H; Wang S; Yu J J Colloid Interface Sci; 2012 Jan; 365(1):46-52. PubMed ID: 21962431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]