These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 26030730)

  • 1. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog.
    Rogerson DT; Sachdeva A; Wang K; Haq T; Kazlauskaite A; Hancock SM; Huguenin-Dezot N; Muqit MM; Fry AM; Bayliss R; Chin JW
    Nat Chem Biol; 2015 Jul; 11(7):496-503. PubMed ID: 26030730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency.
    Owens AE; Grasso KT; Ziegler CA; Fasan R
    Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically Encoded Protein Phosphorylation in Mammalian Cells.
    Beránek V; Reinkemeier CD; Zhang MS; Liang AD; Kym G; Chin JW
    Cell Chem Biol; 2018 Sep; 25(9):1067-1074.e5. PubMed ID: 29937407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tRNA
    Tharp JM; Ehnbom A; Liu WR
    RNA Biol; 2018; 15(4-5):441-452. PubMed ID: 28837402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
    Lee BS; Kim S; Ko BJ; Yoo TH
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing.
    Zhang MS; Brunner SF; Huguenin-Dezot N; Liang AD; Schmied WH; Rogerson DT; Chin JW
    Nat Methods; 2017 Jul; 14(7):729-736. PubMed ID: 28553966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanded cellular amino acid pools containing phosphoserine, phosphothreonine, and phosphotyrosine.
    Steinfeld JB; Aerni HR; Rogulina S; Liu Y; Rinehart J
    ACS Chem Biol; 2014 May; 9(5):1104-12. PubMed ID: 24646179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EFFICIENT GENERATION OF PROTEINS WITH SITE-SPECIFIC PHOSPHOSERINES.
    Strack R
    Nat Methods; 2015 Aug; 12(8):702-3. PubMed ID: 26451426
    [No Abstract]   [Full Text] [Related]  

  • 9. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the genetic code of Escherichia coli with phosphoserine.
    Park HS; Hohn MJ; Umehara T; Guo LT; Osborne EM; Benner J; Noren CJ; Rinehart J; Söll D
    Science; 2011 Aug; 333(6046):1151-4. PubMed ID: 21868676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion.
    Heinemann IU; Rovner AJ; Aerni HR; Rogulina S; Cheng L; Olds W; Fischer JT; Söll D; Isaacs FJ; Rinehart J
    FEBS Lett; 2012 Oct; 586(20):3716-22. PubMed ID: 22982858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli.
    Fu X; Söll D; Sevostyanova A
    RNA Biol; 2018; 15(4-5):461-470. PubMed ID: 29447106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic incorporation of a 2-naphthol group into proteins for site-specific azo coupling.
    Chen S; Tsao ML
    Bioconjug Chem; 2013 Oct; 24(10):1645-9. PubMed ID: 24073629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.
    Hadd A; Perona JJ
    ACS Chem Biol; 2014 Dec; 9(12):2761-6. PubMed ID: 25310879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry.
    Nguyen DP; Lusic H; Neumann H; Kapadnis PB; Deiters A; Chin JW
    J Am Chem Soc; 2009 Jul; 131(25):8720-1. PubMed ID: 19514718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria.
    Luo X; Fu G; Wang RE; Zhu X; Zambaldo C; Liu R; Liu T; Lyu X; Du J; Xuan W; Yao A; Reed SA; Kang M; Zhang Y; Guo H; Huang C; Yang PY; Wilson IA; Schultz PG; Wang F
    Nat Chem Biol; 2017 Aug; 13(8):845-849. PubMed ID: 28604693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Incorporation of ε-N-2-Hydroxyisobutyryl-lysine into Recombinant Histones.
    Xiao H; Xuan W; Shao S; Liu T; Schultz PG
    ACS Chem Biol; 2015 Jul; 10(7):1599-603. PubMed ID: 25909834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed Evolution of the
    Schwark DG; Schmitt MA; Fisk JD
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accessing isotopically labeled proteins containing genetically encoded phosphoserine for NMR with optimized expression conditions.
    Vesely CH; Reardon PN; Yu Z; Barbar E; Mehl RA; Cooley RB
    J Biol Chem; 2022 Dec; 298(12):102613. PubMed ID: 36265582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.