These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26030769)

  • 1. Spatial heterogeneity, host movement and mosquito-borne disease transmission.
    Acevedo MA; Prosper O; Lopiano K; Ruktanonchai N; Caughlin TT; Martcheva M; Osenberg CW; Smith DL
    PLoS One; 2015; 10(6):e0127552. PubMed ID: 26030769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The risk of a mosquito-borne infection in a heterogeneous environment.
    Smith DL; Dushoff J; McKenzie FE
    PLoS Biol; 2004 Nov; 2(11):e368. PubMed ID: 15510228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission.
    Perkins TA; Scott TW; Le Menach A; Smith DL
    PLoS Comput Biol; 2013; 9(12):e1003327. PubMed ID: 24348223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatial model of mosquito host-seeking behavior.
    Cummins B; Cortez R; Foppa IM; Walbeck J; Hyman JM
    PLoS Comput Biol; 2012; 8(5):e1002500. PubMed ID: 22615546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of infectious diseases in spatially heterogeneous environments.
    Rodríguez DJ; Torres-Sorando L
    Bull Math Biol; 2001 May; 63(3):547-71. PubMed ID: 11374305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recasting the theory of mosquito-borne pathogen transmission dynamics and control.
    Smith DL; Perkins TA; Reiner RC; Barker CM; Niu T; Chaves LF; Ellis AM; George DB; Le Menach A; Pulliam JR; Bisanzio D; Buckee C; Chiyaka C; Cummings DA; Garcia AJ; Gatton ML; Gething PW; Hartley DM; Johnston G; Klein EY; Michael E; Lloyd AL; Pigott DM; Reisen WK; Ruktanonchai N; Singh BK; Stoller J; Tatem AJ; Kitron U; Godfray HC; Cohen JM; Hay SI; Scott TW
    Trans R Soc Trop Med Hyg; 2014 Apr; 108(4):185-97. PubMed ID: 24591453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of heterogeneity on the invasion probability of mosquito-borne diseases in multi-host models.
    Bolzoni L; Pugliese A; Rosà R
    J Theor Biol; 2015 Jul; 377():25-35. PubMed ID: 25886821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010.
    Reiner RC; Perkins TA; Barker CM; Niu T; Chaves LF; Ellis AM; George DB; Le Menach A; Pulliam JR; Bisanzio D; Buckee C; Chiyaka C; Cummings DA; Garcia AJ; Gatton ML; Gething PW; Hartley DM; Johnston G; Klein EY; Michael E; Lindsay SW; Lloyd AL; Pigott DM; Reisen WK; Ruktanonchai N; Singh BK; Tatem AJ; Kitron U; Hay SI; Scott TW; Smith DL
    J R Soc Interface; 2013 Apr; 10(81):20120921. PubMed ID: 23407571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions.
    Ringa N; Bauch CT
    Math Biosci Eng; 2018 Apr; 15(2):461-483. PubMed ID: 29161845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-patch and multi-group epidemic models: a new framework.
    Bichara D; Iggidr A
    J Math Biol; 2018 Jul; 77(1):107-134. PubMed ID: 29149377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial heterogeneity and infection patterns on epidemic transmission disclosed by a combined contact-dependent dynamics and compartmental model.
    Zhu Y; Shen R; Dong H; Wang W
    PLoS One; 2023; 18(6):e0286558. PubMed ID: 37310972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Effects on the Multiplicity of Plasmodium falciparum Infections.
    Karl S; White MT; Milne GJ; Gurarie D; Hay SI; Barry AE; Felger I; Mueller I
    PLoS One; 2016; 11(10):e0164054. PubMed ID: 27711149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control.
    Prosper O; Ruktanonchai N; Martcheva M
    J Theor Biol; 2012 Jun; 303():1-14. PubMed ID: 22525434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial heterogeneity and the persistence of infectious diseases.
    Hagenaars TJ; Donnelly CA; Ferguson NM
    J Theor Biol; 2004 Aug; 229(3):349-59. PubMed ID: 15234202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum equilibrium prevalence of mosquito-borne microparasite infections in humans.
    Amaku M; Burattini MN; Coutinho FA; Lopez LF; Massad E
    Comput Math Methods Med; 2013; 2013():659038. PubMed ID: 24454539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecological effects on arbovirus-mosquito cycles of transmission.
    Tabachnick WJ
    Curr Opin Virol; 2016 Dec; 21():124-131. PubMed ID: 27693828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.
    Ruktanonchai NW; Smith DL; De Leenheer P
    Math Biosci; 2016 Sep; 279():90-101. PubMed ID: 27436636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.