These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26030864)

  • 1. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.
    Sun XY; Zhao Y; Liu LL; Jia B; Zhao F; Huang WD; Zhan JC
    PLoS One; 2015; 10(6):e0128611. PubMed ID: 26030864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Proanthocyanidins on Growth and Alcoholic Fermentation of Wine Yeast under Copper Stress.
    Jia B; Liu X; Zhan J; Li J; Huang W
    J Food Sci; 2015 Jun; 80(6):M1319-24. PubMed ID: 25943145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of initial ph on growth characteristics and fermentation properties of Saccharomyces cerevisiae.
    Liu X; Jia B; Sun X; Ai J; Wang L; Wang C; Zhao F; Zhan J; Huang W
    J Food Sci; 2015 Apr; 80(4):M800-8. PubMed ID: 25777552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations.
    Ruiz J; Ortega N; Martín-Santamaría M; Acedo A; Marquina D; Pascual O; Rozès N; Zamora F; Santos A; Belda I
    Int J Food Microbiol; 2019 Sep; 305():108255. PubMed ID: 31252247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Glutathione on Yeast Fermentation Efficiency under Copper Stress.
    Zimdars S; Schrage L; Sommer S; Schieber A; Weber F
    J Agric Food Chem; 2019 Oct; 67(39):10913-10920. PubMed ID: 31532663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation.
    Erten H; Tanguler H
    Lett Appl Microbiol; 2010 May; 50(5):474-9. PubMed ID: 20214731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.
    Chen S; Xu Y
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic variability and physiological traits of Saccharomyces cerevisiae strains isolated from "Vale dos Vinhedos" vineyards reflect agricultural practices and history of this Brazilian wet subtropical area.
    Crosato G; Carlot M; De Iseppi A; Garavaglia J; Pinto LMN; Ziegler DR; Ramos RCS; Rossi RC; Nadai C; Giacomini A; Corich V
    World J Microbiol Biotechnol; 2018 Jul; 34(8):105. PubMed ID: 29971504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of copper stress on growth characteristics and fermentation properties of Saccharomyces cerevisiae and the pathway of copper adsorption during wine fermentation.
    Sun X; Liu L; Zhao Y; Ma T; Zhao F; Huang W; Zhan J
    Food Chem; 2016 Feb; 192():43-52. PubMed ID: 26304318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains.
    Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS
    FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine.
    Gobbi M; Comitini F; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2013 Apr; 33(2):271-81. PubMed ID: 23200661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation.
    Kessi-Pérez EI; Molinet J; Martínez C
    Biol Res; 2020 Jan; 53(1):2. PubMed ID: 31918759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of co-inoculation with Oenococcus oeni on the trancriptome of Saccharomyces cerevisiae and on the flavour-active metabolite profiles during fermentation in synthetic must.
    Rossouw D; Du Toit M; Bauer FF
    Food Microbiol; 2012 Feb; 29(1):121-31. PubMed ID: 22029926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations.
    Santos J; Sousa MJ; Cardoso H; Inácio J; Silva S; Spencer-Martins I; Leão C
    Microbiology (Reading); 2008 Feb; 154(Pt 2):422-430. PubMed ID: 18227246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient depletion modifies cell wall adsorption activity of wine yeast.
    Sidari R; Caridi A
    World J Microbiol Biotechnol; 2016 Jun; 32(6):89. PubMed ID: 27116955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation.
    Yoshida M; Furutani N; Imai F; Miki T; Izawa S
    Microbiol Spectr; 2022 Oct; 10(5):e0090122. PubMed ID: 36040149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ergosterol and phytosterols on wine alcoholic fermentation with
    Girardi-Piva G; Casalta E; Legras JL; Nidelet T; Pradal M; Macna F; Ferreira D; Ortiz-Julien A; Tesnière C; Galeote V; Mouret JR
    Front Microbiol; 2022; 13():966245. PubMed ID: 36160262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries.
    Morgan SC; Scholl CM; Benson NL; Stone ML; Durall DM
    Int J Food Microbiol; 2017 Mar; 244():96-102. PubMed ID: 28086153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of yeasts from Ecuadorian chicha by their performance as starters for alcoholic fermentations in the food industry.
    Grijalva-Vallejos N; Aranda A; Matallana E
    Int J Food Microbiol; 2020 Mar; 317():108462. PubMed ID: 31794930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress.
    Malacrinò P; Tosi E; Caramia G; Prisco R; Zapparoli G
    Lett Appl Microbiol; 2005; 40(6):466-72. PubMed ID: 15892744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.