These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 26031573)
41. Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Roden EE; Wetzel RG Microb Ecol; 2003 Mar; 45(3):252-8. PubMed ID: 12658519 [TBL] [Abstract][Full Text] [Related]
42. Arsenic mobilization through microbially mediated deflocculation of ferrihydrite. Tadanier CJ; Schreiber ME; Roller JW Environ Sci Technol; 2005 May; 39(9):3061-8. PubMed ID: 15926553 [TBL] [Abstract][Full Text] [Related]
43. Hydrocarbon Degradation and Bacterial Community Responses During Remediation of Sediment Artificially Contaminated with Heavy Oil. N Nuñal S; Santander-DE Leon SMS; Hongyi W; Regal AA; Yoshikawa T; Okunishi S; Maeda H Biocontrol Sci; 2017; 22(4):187-203. PubMed ID: 29279576 [TBL] [Abstract][Full Text] [Related]
44. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785 [TBL] [Abstract][Full Text] [Related]
45. Effect of iron on the sensitivity of hydrogen, acetate, and butyrate metabolism to inhibition by long-chain fatty acids in vegetable-oil-enriched freshwater sediments. Li Z; Wrenn BA; Venosa AD Water Res; 2005 Aug; 39(13):3109-19. PubMed ID: 16000206 [TBL] [Abstract][Full Text] [Related]
46. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions. Siegert M; Cichocka D; Herrmann S; Gründger F; Feisthauer S; Richnow HH; Springael D; Krüger M FEMS Microbiol Lett; 2011 Feb; 315(1):6-16. PubMed ID: 21133990 [TBL] [Abstract][Full Text] [Related]
47. Degradation of tributyltin in microcosm using Mekong River sediment. Suehiro F; Kobayashi T; Nonaka L; Tuyen BC; Suzuki S Microb Ecol; 2006 Jul; 52(1):19-25. PubMed ID: 16767521 [TBL] [Abstract][Full Text] [Related]
48. The biogeographical distribution of closely related freshwater sediment bacteria is determined by environmental selection. Gray ND; Brown A; Nelson DR; Pickup RW; Rowan AK; Head IM ISME J; 2007 Nov; 1(7):596-605. PubMed ID: 18043667 [TBL] [Abstract][Full Text] [Related]
49. [Assemblage composition and distribution of meiofauna in the southern Yellow Sea cold water mass during summer and autumn]. Xu M; Liu XS; Liu QH; Huang DM; Yuan ZH; Zhang ZN Ying Yong Sheng Tai Xue Bao; 2015 Feb; 26(2):616-24. PubMed ID: 26094481 [TBL] [Abstract][Full Text] [Related]
50. Nematodes trophic groups changing via reducing of bacterial population density after sediment enrichment to ciprofloxacin antibiotic: Case study of Marine Mediterranean community. Nasri A; Allouche M; Hannachi A; Barkaoui T; Barhoumi B; Saidi I; D'Agostino F; Mahmoudi E; Beyrem H; Boufahja F Aquat Toxicol; 2020 Nov; 228():105632. PubMed ID: 33010638 [TBL] [Abstract][Full Text] [Related]
51. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean. Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145 [TBL] [Abstract][Full Text] [Related]
52. Colloid-mediated transport of tetracycline in saturated porous media: Comparison between ferrihydrite and montmorillonite. Wang M; Zhang Q; Lu T; Chen J; Wei Q; Chen W; Zhou Y; Qi Z J Environ Manage; 2021 Dec; 299():113638. PubMed ID: 34488115 [TBL] [Abstract][Full Text] [Related]
53. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment. Poulsen M; Kofoed MV; Larsen LH; Schramm A; Stief P Syst Appl Microbiol; 2014 Feb; 37(1):51-9. PubMed ID: 24054696 [TBL] [Abstract][Full Text] [Related]
54. The use of meiofauna as an indicator of benthic organic enrichment associated with salmonid aquaculture. Sutherland TF; Levings CD; Petersen SA; Poon P; Piercey B Mar Pollut Bull; 2007 Aug; 54(8):1249-61. PubMed ID: 17585949 [TBL] [Abstract][Full Text] [Related]
55. Differential responses of benthic microbes and meiofauna to fish-farm disturbance in coastal sediments. La Rosa T; Mirto S; Mazzola A; Danovaro R Environ Pollut; 2001; 112(3):427-34. PubMed ID: 11291449 [TBL] [Abstract][Full Text] [Related]
56. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Dai Y; Yang Y; Wu Z; Feng Q; Xie S; Liu Y Appl Microbiol Biotechnol; 2016 May; 100(9):4161-75. PubMed ID: 26711281 [TBL] [Abstract][Full Text] [Related]
57. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches. Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116 [TBL] [Abstract][Full Text] [Related]
58. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. Flies CB; Jonkers HM; de Beer D; Bosselmann K; Böttcher ME; Schüler D FEMS Microbiol Ecol; 2005 Apr; 52(2):185-95. PubMed ID: 16329905 [TBL] [Abstract][Full Text] [Related]
59. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Sharma P; Ofner J; Kappler A Environ Sci Technol; 2010 Jun; 44(12):4479-85. PubMed ID: 20433135 [TBL] [Abstract][Full Text] [Related]
60. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes. Yang Y; Dai Y; Li N; Li B; Xie S; Liu Y Microb Ecol; 2017 Feb; 73(2):285-295. PubMed ID: 27726034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]