These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 26031573)
61. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling. Mejia J; Roden EE; Ginder-Vogel M Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922 [TBL] [Abstract][Full Text] [Related]
62. Dissimilatory iron reduction and odor indicator abatement by biofilm communities in swine manure microcosms. Castillo-Gonzalez HA; Bruns MA Appl Environ Microbiol; 2005 Sep; 71(9):4972-8. PubMed ID: 16151075 [TBL] [Abstract][Full Text] [Related]
63. Effects of ferric hydroxide on the anaerobic biodegradation kinetics and toxicity of vegetable oil in freshwater sediments. Li Z; Wrenn BA Water Res; 2004 Nov; 38(18):3859-68. PubMed ID: 15380976 [TBL] [Abstract][Full Text] [Related]
64. Effects of deposit-feeding macrofauna on benthic bacteria, viruses, and protozoa in a silty freshwater sediment. Wieltschnig C; Fischer UR; Velimirov B; Kirschner AK Microb Ecol; 2008 Jul; 56(1):1-12. PubMed ID: 17876654 [TBL] [Abstract][Full Text] [Related]
65. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Gerlach SA Oecologia; 1978 Jan; 33(1):55-69. PubMed ID: 28309266 [TBL] [Abstract][Full Text] [Related]
66. Temporal variation of magnetotactic bacterial communities in two freshwater sediment microcosms. Lin W; Pan Y FEMS Microbiol Lett; 2010 Jan; 302(1):85-92. PubMed ID: 19909346 [TBL] [Abstract][Full Text] [Related]
67. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
68. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Straub KL; Schink B Appl Environ Microbiol; 2004 Oct; 70(10):5744-9. PubMed ID: 15466509 [TBL] [Abstract][Full Text] [Related]
69. Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. van der Zaan B; de Weert J; Rijnaarts H; de Vos WM; Smidt H; Gerritse J Water Res; 2009 Jul; 43(13):3207-16. PubMed ID: 19501382 [TBL] [Abstract][Full Text] [Related]
70. A comparative approach using ecotoxicological methods from single-species bioassays to model ecosystems. Haegerbaeumer A; Höss S; Ristau K; Claus E; Möhlenkamp C; Heininger P; Traunspurger W Environ Toxicol Chem; 2016 Dec; 35(12):2987-2997. PubMed ID: 27155316 [TBL] [Abstract][Full Text] [Related]
71. Relationship of nutrient dynamics and bacterial community structure at the water-sediment interface using a benthic chamber experiment. Ki BM; Huh IA; Choi JH; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Apr; 53(5):482-491. PubMed ID: 29303410 [TBL] [Abstract][Full Text] [Related]
72. Linking ecological impact to metal concentrations and speciation: a microcosm experiment using a salt marsh meiofaunal community. Millward RN; Carman KR; Fleeger JW; Gambrell RP; Powell RT; Rouse MA Environ Toxicol Chem; 2001 Sep; 20(9):2029-37. PubMed ID: 11521831 [TBL] [Abstract][Full Text] [Related]
73. Microbial-meiofaunal interrelationships in coastal sediments of the Red Sea. El-Serehy HA; Al-Rasheid KA; Al-Misned FA; Al-Talasat AA; Gewik MM Saudi J Biol Sci; 2016 May; 23(3):327-34. PubMed ID: 27081356 [TBL] [Abstract][Full Text] [Related]
74. Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Gyedu-Ababio TK; Baird D Ecotoxicol Environ Saf; 2006 Mar; 63(3):443-50. PubMed ID: 16406597 [TBL] [Abstract][Full Text] [Related]
75. Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotope ratios in phosphate. Jaisi DP; Kukkadapu RK; Stout LM; Varga T; Blake RE Environ Sci Technol; 2011 Aug; 45(15):6254-61. PubMed ID: 21732604 [TBL] [Abstract][Full Text] [Related]
76. Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles. Martins G; Terada A; Ribeiro DC; Corral AM; Brito AG; Smets BF; Nogueira R FEMS Microbiol Ecol; 2011 Sep; 77(3):666-79. PubMed ID: 21635276 [TBL] [Abstract][Full Text] [Related]
77. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface. Yu R; Gan P; Mackay AA; Zhang S; Smets BF FEMS Microbiol Ecol; 2010 Feb; 71(2):260-71. PubMed ID: 19909343 [TBL] [Abstract][Full Text] [Related]
78. Response of nematode communities to metals and PAHs in freshwater microcosms. Haegerbaeumer A; Höss S; Heininger P; Traunspurger W Ecotoxicol Environ Saf; 2018 Feb; 148():244-253. PubMed ID: 29065374 [TBL] [Abstract][Full Text] [Related]
79. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide. Cain DJ; Croteau MN; Fuller CC Environ Sci Technol; 2013 Mar; 47(6):2869-76. PubMed ID: 23402601 [TBL] [Abstract][Full Text] [Related]
80. Effect of salinity on temporal and spatial dynamics of ammonia-oxidising bacteria from intertidal freshwater sediment. Coci M; Riechmann D; Bodelier PL; Stefani S; Zwart G; Laanbroek HJ FEMS Microbiol Ecol; 2005 Aug; 53(3):359-68. PubMed ID: 16329955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]