BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 26031664)

  • 21. Comparative metabolomics analysis reveals high-altitude adaptations in a toad-headed viviparous lizard, Phrynocephalus vlangalii.
    Zhang X; Men S; Jia L; Tang X; Storey KB; Niu Y; Chen Q
    Front Zool; 2023 Nov; 20(1):35. PubMed ID: 37919723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trophic niche and adaptation in highland lizards: sex has greater influences than species matching.
    Yang S; Qu J; Tang K; Zhao X; Zhou H; Hu J
    Integr Zool; 2024 May; 19(3):564-576. PubMed ID: 37858979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis.
    Yang W; Qi Y; Fu J
    BMC Genet; 2016 Oct; 17(1):134. PubMed ID: 27716028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Population transcriptomics uncover the relative roles of positive selection and differential expression in Batrachium bungei adaptation to the Qinghai-Tibetan plateau.
    Yu X; Wei P; Zhao S; Chen Z; Li X; Zhang W; Liu C; Yang Y; Li X; Liu X
    Plant Cell Rep; 2023 May; 42(5):879-893. PubMed ID: 36973418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai-Tibetan Plateau.
    Zhang D; Yu M; Hu P; Peng S; Liu Y; Li W; Wang C; He S; Zhai W; Xu Q; Chen L
    G3 (Bethesda); 2017 Apr; 7(4):1267-1276. PubMed ID: 28209761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence of high-altitude adaptation in the glyptosternoid fish, Creteuchiloglanis macropterus from the Nujiang River obtained through transcriptome analysis.
    Kang J; Ma X; He S
    BMC Evol Biol; 2017 Nov; 17(1):229. PubMed ID: 29169322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerated evolution and positive selection of rhodopsin in Tibetan loaches living in high altitude.
    Lv W; Lei Y; Deng Y; Sun N; Liu X; Yang L; He S
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2598-2606. PubMed ID: 33470199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The geography and timing of genetic divergence in the lizard Phrynocephalus theobaldi on the Qinghai-Tibetan plateau.
    Jin Y; Liu N; Brown RP
    Sci Rep; 2017 May; 7(1):2281. PubMed ID: 28536444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary analysis of mitochondrially encoded proteins of toad-headed lizards, Phrynocephalus, along an altitudinal gradient.
    Jin Y; Wo Y; Tong H; Song S; Zhang L; Brown RP
    BMC Genomics; 2018 Mar; 19(1):185. PubMed ID: 29510674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive transcriptome analysis reveals accelerated genic evolution in a Tibet fish, Gymnodiptychus pachycheilus.
    Yang L; Wang Y; Zhang Z; He S
    Genome Biol Evol; 2014 Dec; 7(1):251-61. PubMed ID: 25543049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cladogenesis and phylogeography of the lizard Phrynocephalus vlangalii (Agamidae) on the Tibetan plateau.
    Jin YT; Brown RP; Liu NF
    Mol Ecol; 2008 Apr; 17(8):1971-82. PubMed ID: 18363665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Re-Assessment of Positive Selection on Mitochondrial Genomes of High-Elevation Phrynocephalus Lizards.
    Atlas JE; Fu J
    J Mol Evol; 2021 Feb; 89(1-2):95-102. PubMed ID: 33486551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic and functional evidence reveals convergent evolution in fishes on the Tibetan Plateau.
    Yang L; Wang Y; Sun N; Chen J; He S
    Mol Ecol; 2021 Nov; 30(22):5752-5764. PubMed ID: 34516715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau.
    Zhu X; Guan Y; Signore AV; Natarajan C; DuBay SG; Cheng Y; Han N; Song G; Qu Y; Moriyama H; Hoffmann FG; Fago A; Lei F; Storz JF
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1865-1870. PubMed ID: 29432191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes.
    Ma X; Dai W; Kang J; Yang L; He S
    G3 (Bethesda); 2015 Nov; 6(1):141-8. PubMed ID: 26564948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs.
    Lan D; Xiong X; Ji W; Li J; Mipam TD; Ai Y; Chai Z
    Genetica; 2018 Apr; 146(2):151-160. PubMed ID: 29285685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai-Tibet Plateau.
    Hao Y; Song G; Zhang YE; Zhai W; Jia C; Ji Y; Tang S; Lv H; Qu Y; Lei F
    Mol Ecol; 2023 Jul; 32(13):3524-3540. PubMed ID: 37000417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Transcriptome Profiling of Subterranean Zokor, Myospalax baileyi, to High- Altitude Stresses in Tibet.
    Cai Z; Wang L; Song X; Tagore S; Li X; Wang H; Chen J; Li K; Frenkel Z; Gao D; Frenkel-Morgenstern M; Zhang T; Nevo E
    Sci Rep; 2018 Mar; 8(1):4671. PubMed ID: 29549310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau.
    Yuan ML; Zhang QL; Zhang L; Jia CL; Li XP; Yang XZ; Feng RQ
    Mol Phylogenet Evol; 2018 May; 122():116-124. PubMed ID: 29408286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau.
    Zhang W; Fan Z; Han E; Hou R; Zhang L; Galaverni M; Huang J; Liu H; Silva P; Li P; Pollinger JP; Du L; Zhang X; Yue B; Wayne RK; Zhang Z
    PLoS Genet; 2014 Jul; 10(7):e1004466. PubMed ID: 25078401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.