These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26032006)

  • 21. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides.
    Lu X; Jiang DJ; Yan JX; Ma ZE; Luo XE; Wei TL; Xu Y; He QH
    Talanta; 2018 Mar; 179():646-651. PubMed ID: 29310289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape in laboratory conditions.
    Burgio G; Dinelli G; Marotti I; Zurla M; Bosi S; Lanzoni A
    Bull Entomol Res; 2011 Apr; 101(2):241-7. PubMed ID: 21034523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effects of transgenic Bt crops on non-target soil animals].
    Yuan YG; Ge F
    Ying Yong Sheng Tai Xue Bao; 2010 May; 21(5):1339-45. PubMed ID: 20707123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bt cotton area contraction drives regional pest resurgence, crop loss, and pesticide use.
    Lu Y; Wyckhuys KAG; Yang L; Liu B; Zeng J; Jiang Y; Desneux N; Zhang W; Wu K
    Plant Biotechnol J; 2022 Feb; 20(2):390-398. PubMed ID: 34626524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bt toxin not guilty by association.
    de Maagd RA; Bravo A; Crickmore N
    Nat Biotechnol; 2005 Jul; 23(7):791. PubMed ID: 16003355
    [No Abstract]   [Full Text] [Related]  

  • 26. A screening method for prioritizing non-target invertebrates for improved biosafety testing of transgenic crops.
    Todd JH; Ramankutty P; Barraclough EI; Malone LA
    Environ Biosafety Res; 2008; 7(1):35-56. PubMed ID: 18384728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yield effects of genetically modified crops in developing countries.
    Qaim M; Zilberman D
    Science; 2003 Feb; 299(5608):900-2. PubMed ID: 12574633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent.
    Himanen SJ; Nerg AM; Nissinen A; Stewart CN; Poppy GM; Holopainen JK
    Environ Pollut; 2009 Jan; 157(1):181-5. PubMed ID: 18757127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management.
    Burkness EC; Dively G; Patton T; Morey AC; Hutchison WD
    GM Crops; 2010; 1(5):337-43. PubMed ID: 21844691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effectiveness of the high dose/refuge strategy for managing pest resistance to Bacillus thuringiensis (Bt) plants expressing one or two toxins.
    Gryspeirt A; Grégoire JC
    Toxins (Basel); 2012 Oct; 4(10):810-35. PubMed ID: 23162699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities.
    Zhaolei L; Naishun B; Xueping C; Jun C; Manqiu X; Zhiping S; Ming N; Changming F
    Ecotoxicol Environ Saf; 2018 May; 152():33-41. PubMed ID: 29407780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insecticidal Activity of
    Domínguez-Arrizabalaga M; Villanueva M; Escriche B; Ancín-Azpilicueta C; Caballero P
    Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32610662
    [No Abstract]   [Full Text] [Related]  

  • 33. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings.
    Jouzani GS; Valijanian E; Sharafi R
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2691-2711. PubMed ID: 28235989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. No Adverse Effects of Stacked Bacillus thuringiensis Maize on the Midge Chironomus riparius.
    Chen Y; Romeis J; Meissle M
    Environ Toxicol Chem; 2022 Apr; 41(4):1078-1088. PubMed ID: 35040173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops.
    Jin L; Zhang H; Lu Y; Yang Y; Wu K; Tabashnik BE; Wu Y
    Nat Biotechnol; 2015 Feb; 33(2):169-74. PubMed ID: 25503384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fate and transport of the Cry1Ab protein in an agricultural field and laboratory aquatic microcosms.
    Strain KE; Lydy MJ
    Chemosphere; 2015 Aug; 132():94-100. PubMed ID: 25828252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.
    Farias DF; Peijnenburg AA; Grossi-de-Sá MF; Carvalho AF
    Bioengineered; 2015; 6(6):323-7. PubMed ID: 26513483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment.
    Douville M; Gagné F; Blaise C; André C
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):195-203. PubMed ID: 16499967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling in the light of uncertainty of key parameters: a call to exercise caution in field predictions of Bt-maize effects.
    Lang A; Brunzel S; Dolek M; Otto M; Theissen B
    Proc Biol Sci; 2011 Apr; 278(1708):980-1. PubMed ID: 21208960
    [No Abstract]   [Full Text] [Related]  

  • 40. Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms.
    Castaldini M; Turrini A; Sbrana C; Benedetti A; Marchionni M; Mocali S; Fabiani A; Landi S; Santomassimo F; Pietrangeli B; Nuti MP; Miclaus N; Giovannetti M
    Appl Environ Microbiol; 2005 Nov; 71(11):6719-29. PubMed ID: 16269702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.