These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26032318)

  • 21. Observational determination of albedo decrease caused by vanishing Arctic sea ice.
    Pistone K; Eisenman I; Ramanathan V
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3322-6. PubMed ID: 24550469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Arctic-Subarctic sea ice system is entering a seasonal regime: Implications for future Arctic amplification.
    Haine TWN; Martin T
    Sci Rep; 2017 Jul; 7(1):4618. PubMed ID: 28676671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure.
    Ryan JC; Smith LC; van As D; Cooley SW; Cooper MG; Pitcher LH; Hubbard A
    Sci Adv; 2019 Mar; 5(3):eaav3738. PubMed ID: 30854432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging.
    Grémillet D; Fort J; Amélineau F; Zakharova E; Le Bot T; Sala E; Gavrilo M
    Glob Chang Biol; 2015 Mar; 21(3):1116-23. PubMed ID: 25639886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global and Arctic climate engineering: numerical model studies.
    Caldeira K; Wood L
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1882):4039-56. PubMed ID: 18757275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury distribution and transport across the ocean-sea-ice-atmosphere interface in the Arctic Ocean.
    Chaulk A; Stern GA; Armstrong D; Barber DG; Wang F
    Environ Sci Technol; 2011 Mar; 45(5):1866-72. PubMed ID: 21288021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delayed Antarctic melt season reduces albedo feedback.
    Liang L; Guo H; Liang S; Li X; Moore JC; Li X; Cheng X; Wu W; Liu Y; Rinke A; Jia G; Pan F; Gong C
    Natl Sci Rev; 2023 Sep; 10(9):nwad157. PubMed ID: 37565193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regular network model for the sea ice-albedo feedback in the Arctic.
    Müller-Stoffels M; Wackerbauer R
    Chaos; 2011 Mar; 21(1):013111. PubMed ID: 21456825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.
    Popović P; Cael BB; Silber M; Abbot DS
    Phys Rev Lett; 2018 Apr; 120(14):148701. PubMed ID: 29694130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The biogeography of red snow microbiomes and their role in melting arctic glaciers.
    Lutz S; Anesio AM; Raiswell R; Edwards A; Newton RJ; Gill F; Benning LG
    Nat Commun; 2016 Jun; 7():11968. PubMed ID: 27329445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multimodel Evidence for an Atmospheric Circulation Response to Arctic Sea Ice Loss in the CMIP5 Future Projections.
    Zappa G; Pithan F; Shepherd TG
    Geophys Res Lett; 2018 Jan; 45(2):1011-1019. PubMed ID: 29576667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A seamless approach to understanding and predicting Arctic sea ice in Met Office modelling systems.
    Hewitt HT; Ridley JK; Keen AB; West AE; Peterson KA; Rae JG; Milton SF; Bacon S
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2045):. PubMed ID: 26032316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface albedo measurements and surface type classification from helicopter-based observations during MOSAiC.
    Sperzel TR; Jäkel E; Pätzold F; Lampert A; Niehaus H; Spreen G; Rosenburg S; Birnbaum G; Neckel N; Wendisch M
    Sci Data; 2023 Sep; 10(1):584. PubMed ID: 37673937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing spread in climate model projections of a September ice-free Arctic.
    Liu J; Song M; Horton RM; Hu Y
    Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12571-6. PubMed ID: 23858431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New climate models reveal faster and larger increases in Arctic precipitation than previously projected.
    McCrystall MR; Stroeve J; Serreze M; Forbes BC; Screen JA
    Nat Commun; 2021 Nov; 12(1):6765. PubMed ID: 34848697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.
    Kashiwase H; Ohshima KI; Nihashi S; Eicken H
    Sci Rep; 2017 Aug; 7(1):8170. PubMed ID: 28811530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ozone depletion and climate change: impacts on UV radiation.
    Bais AF; McKenzie RL; Bernhard G; Aucamp PJ; Ilyas M; Madronich S; Tourpali K
    Photochem Photobiol Sci; 2015 Jan; 14(1):19-52. PubMed ID: 25380284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatially mapped reductions in the length of the Arctic sea ice season.
    Parkinson CL
    Geophys Res Lett; 2014 Jun; 41(12):4316-4322. PubMed ID: 25821265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear threshold behavior during the loss of Arctic sea ice.
    Eisenman I; Wettlaufer JS
    Proc Natl Acad Sci U S A; 2009 Jan; 106(1):28-32. PubMed ID: 19109440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How does climate change influence Arctic mercury?
    Stern GA; Macdonald RW; Outridge PM; Wilson S; Chételat J; Cole A; Hintelmann H; Loseto LL; Steffen A; Wang F; Zdanowicz C
    Sci Total Environ; 2012 Jan; 414():22-42. PubMed ID: 22104383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.