BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26032334)

  • 1. N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation.
    Purkrtová Z; Chardot T; Froissard M
    Arch Biochem Biophys; 2015 Aug; 579():47-54. PubMed ID: 26032334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast.
    Froissard M; D'andréa S; Boulard C; Chardot T
    FEMS Yeast Res; 2009 May; 9(3):428-38. PubMed ID: 19220478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic analysis and expression investigation of caleosin gene family in Arabidopsis.
    Shen Y; Xie J; Liu RD; Ni XF; Wang XH; Li ZX; Zhang M
    Biochem Biophys Res Commun; 2014 Jun; 448(4):365-71. PubMed ID: 24796675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of artificial oil bodies constituted with recombinant caleosins.
    Liu TH; Chyan CL; Li FY; Tzen JT
    J Agric Food Chem; 2009 Mar; 57(6):2308-13. PubMed ID: 19216529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation.
    Cai Y; Goodman JM; Pyc M; Mullen RT; Dyer JM; Chapman KD
    Plant Cell; 2015 Sep; 27(9):2616-36. PubMed ID: 26362606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational study on the structure-function relationships of plant caleosins.
    Saadat F
    Sci Rep; 2023 Jan; 13(1):72. PubMed ID: 36593238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.
    Liu H; Wang C; Chen F; Shen S
    J Proteomics; 2015 Jan; 113():403-14. PubMed ID: 25449834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tobacco pollen tubes - a fast and easy tool for studying lipid droplet association of plant proteins.
    Müller AO; Blersch KF; Gippert AL; Ischebeck T
    Plant J; 2017 Mar; 89(5):1055-1064. PubMed ID: 27943529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of caleosin and oleosin in oil bodies of pine pollen.
    Pasaribu B; Chen CS; Liao YK; Jiang PL; Tzen JTC
    Plant Physiol Biochem; 2017 Feb; 111():20-29. PubMed ID: 27889638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of caleosin in
    Pasaribu B; Fu JH; Jiang PL
    Plant Signal Behav; 2020 Aug; 15(8):1779486. PubMed ID: 32552503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High water solubility and fold in amphipols of proteins with large hydrophobic regions: oleosins and caleosin from seed lipid bodies.
    Gohon Y; Vindigni JD; Pallier A; Wien F; Celia H; Giuliani A; Tribet C; Chardot T; Briozzo P
    Biochim Biophys Acta; 2011 Mar; 1808(3):706-16. PubMed ID: 21146495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.
    Shen Y; Liu M; Wang L; Li Z; Taylor DC; Li Z; Zhang M
    Mol Genet Genomics; 2016 Apr; 291(2):971-88. PubMed ID: 26786939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif.
    Hanano A; Burcklen M; Flenet M; Ivancich A; Louwagie M; Garin J; Blée E
    J Biol Chem; 2006 Nov; 281(44):33140-51. PubMed ID: 16956885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple caleosins have overlapping functions in oil accumulation and embryo development.
    Liu X; Yang Z; Wang Y; Shen Y; Jia Q; Zhao C; Zhang M
    J Exp Bot; 2022 Jun; 73(12):3946-3962. PubMed ID: 35419601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae.
    Jamme F; Vindigni JD; Méchin V; Cherifi T; Chardot T; Froissard M
    PLoS One; 2013; 8(9):e74421. PubMed ID: 24040242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis.
    Kim YY; Jung KW; Yoo KS; Jeung JU; Shin JS
    Plant Cell Physiol; 2011 May; 52(5):874-84. PubMed ID: 21471120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds.
    Chen JC; Tsai CC; Tzen JT
    Plant Cell Physiol; 1999 Oct; 40(10):1079-86. PubMed ID: 10589521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution.
    Song W; Qin Y; Zhu Y; Yin G; Wu N; Li Y; Hu Y
    BMC Evol Biol; 2014 Jun; 14():124. PubMed ID: 24913827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.
    Charuchinda P; Waditee-Sirisattha R; Kageyama H; Yamada D; Sirisattha S; Tanaka Y; Mahakhant A; Takabe T
    Biosci Biotechnol Biochem; 2015; 79(7):1119-24. PubMed ID: 25703935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a caleosin associated with hazelnut (Corylus avellana L.) oil bodies.
    Lamberti C; Nebbia S; Balestrini R; Marengo E; Manfredi M; Pavese V; Cirrincione S; Giuffrida MG; Cavallarin L; Acquadro A; Abbà S
    Plant Biol (Stuttg); 2020 May; 22(3):404-409. PubMed ID: 32027456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.