These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 26032367)
21. The role of betaArg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides. Fowler GJ; Hess S; Pullerits T; Sundström V; Hunter CN Biochemistry; 1997 Sep; 36(37):11282-91. PubMed ID: 9287171 [TBL] [Abstract][Full Text] [Related]
22. Reconstitution and replacement of bacteriochlorophyll a molecules in photosynthetic reaction centers. Kobayashi M; Takaya A; Kanai N; Ota Y; Saito T; Wang ZY; Nozawa T J Biochem; 2004 Sep; 136(3):363-9. PubMed ID: 15598894 [TBL] [Abstract][Full Text] [Related]
23. Competitive inhibitions of the chlorophyll synthase of Synechocystis sp. strain PCC 6803 by bacteriochlorophyllide a and the bacteriochlorophyll synthase of Rhodobacter sphaeroides by chlorophyllide a. Kim EJ; Lee JK J Bacteriol; 2010 Jan; 192(1):198-207. PubMed ID: 19880605 [TBL] [Abstract][Full Text] [Related]
24. Electron-nuclear and electron-electron double resonance spectroscopies show that the primary quinone acceptor QA in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides remains in the same orientation upon light-induced reduction. Flores M; Savitsky A; Paddock ML; Abresch EC; Dubinskii AA; Okamura MY; Lubitz W; Möbius K J Phys Chem B; 2010 Dec; 114(50):16894-901. PubMed ID: 21090818 [TBL] [Abstract][Full Text] [Related]
25. Structural and spectroscopic consequences of hexacoordination of a bacteriochlorophyll cofactor in the Rhodobacter sphaeroides reaction center . Frolov D; Marsh M; Crouch LI; Fyfe PK; Robert B; van Grondelle R; Hadfield A; Jones MR Biochemistry; 2010 Mar; 49(9):1882-92. PubMed ID: 20112981 [TBL] [Abstract][Full Text] [Related]
26. Substitution of isoleucine L177 by histidine in Rhodobacter sphaeroides reaction center results in the covalent binding of PA bacteriochlorophyll to the L subunit. Fufina TY; Vasilieva LG; Khatypov RA; Shkuropatov AY; Shuvalov VA FEBS Lett; 2007 Dec; 581(30):5769-73. PubMed ID: 18036346 [TBL] [Abstract][Full Text] [Related]
27. Pomegranate as a cosmeceutical source: pomegranate fractions promote proliferation and procollagen synthesis and inhibit matrix metalloproteinase-1 production in human skin cells. Aslam MN; Lansky EP; Varani J J Ethnopharmacol; 2006 Feb; 103(3):311-8. PubMed ID: 16221534 [TBL] [Abstract][Full Text] [Related]
28. Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: evidence for its interaction with the alpha-polypeptide of the core light-harvesting complex. Recchia PA; Davis CM; Lilburn TG; Beatty JT; Parkes-Loach PS; Hunter CN; Loach PA Biochemistry; 1998 Aug; 37(31):11055-63. PubMed ID: 9693001 [TBL] [Abstract][Full Text] [Related]
29. Etanercept restores a differentiated keratinocyte phenotype in psoriatic human skin: a morphological study. Donetti E; Gualerzi A; Ricceri F; Pescitelli L; Bedoni M; Prignano F Exp Dermatol; 2012 Jul; 21(7):549-51. PubMed ID: 22716254 [TBL] [Abstract][Full Text] [Related]
30. Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Allen JP; Artz K; Lin X; Williams JC; Ivancich A; Albouy D; Mattioli TA; Fetsch A; Kuhn M; Lubitz W Biochemistry; 1996 May; 35(21):6612-9. PubMed ID: 8639609 [TBL] [Abstract][Full Text] [Related]
31. Protective effect of a Butea monosperma (Lam.) Taub. flowers extract against skin inflammation: antioxidant, anti-inflammatory and matrix metalloproteinases inhibitory activities. Krolikiewicz-Renimel I; Michel T; Destandau E; Reddy M; André P; Elfakir C; Pichon C J Ethnopharmacol; 2013 Jul; 148(2):537-43. PubMed ID: 23680157 [TBL] [Abstract][Full Text] [Related]
32. Soluble proteome investigation of cobalt effect on the carotenoidless mutant of Rhodobacter sphaeroides. Pisani F; Italiano F; de Leo F; Gallerani R; Rinalducci S; Zolla L; Agostiano A; Ceci LR; Trotta M J Appl Microbiol; 2009 Jan; 106(1):338-49. PubMed ID: 19054232 [TBL] [Abstract][Full Text] [Related]
33. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress. Yoo HG; Lee BH; Kim W; Lee JS; Kim GH; Chun OK; Koo SI; Kim DO J Med Food; 2014 Nov; 17(11):1189-96. PubMed ID: 25136892 [TBL] [Abstract][Full Text] [Related]
34. Temperature-dependent behavior of bacteriochlorophyll and bacteriopheophytin in the photosynthetic reaction center from Rhodobacter sphaeroides. Ivancich A; Lutz M; Mattioli TA Biochemistry; 1997 Mar; 36(11):3242-53. PubMed ID: 9116002 [TBL] [Abstract][Full Text] [Related]
35. Cytotoxic activities of extracts and compounds from Viscum coloratum and its transformation products by Rhodobacter sphaeroides. Yang GE; Chen B; Zhang Z; Gong J; Bai H; Li J; Wang Y; Li B Appl Biochem Biotechnol; 2009 Mar; 152(3):353-65. PubMed ID: 18839075 [TBL] [Abstract][Full Text] [Related]
36. Differential protein insertion into developing photosynthetic membrane regions of Rhodopseudomonas sphaeroides. Inamine GS; Reilly PA; Niederman RA J Cell Biochem; 1984; 24(1):69-77. PubMed ID: 6609927 [TBL] [Abstract][Full Text] [Related]
37. Beneficial regulation of matrixmetalloproteinases and their inhibitors, fibrillar collagens and transforming growth factor-beta by Polypodium leucotomos, directly or in dermal fibroblasts, ultraviolet radiated fibroblasts, and melanoma cells. Philips N; Conte J; Chen YJ; Natrajan P; Taw M; Keller T; Givant J; Tuason M; Dulaj L; Leonardi D; Gonzalez S Arch Dermatol Res; 2009 Aug; 301(7):487-95. PubMed ID: 19373483 [TBL] [Abstract][Full Text] [Related]
38. Overexpression and characterization of the Rhodobacter sphaeroides PufX membrane protein in Escherichia coli. Onodera S; Suzuki H; Shimada Y; Kobayashi M; Nozawa T; Wang ZY Photochem Photobiol; 2007; 83(1):139-44. PubMed ID: 16752956 [TBL] [Abstract][Full Text] [Related]
39. Effects of extracellular calcium on the growth-differentiation switch in immortalized keratinocyte HaCaT cells compared with normal human keratinocytes. Micallef L; Belaubre F; Pinon A; Jayat-Vignoles C; Delage C; Charveron M; Simon A Exp Dermatol; 2009 Feb; 18(2):143-51. PubMed ID: 18637039 [TBL] [Abstract][Full Text] [Related]
40. Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides. Gall A; Cogdell RJ; Robert B Biochemistry; 2003 Jun; 42(23):7252-8. PubMed ID: 12795622 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]