BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26032495)

  • 21. Application of green fluorescent protein-labeled assay for the study of subcellular localization of Newcastle disease virus matrix protein.
    Duan Z; Li Q; He L; Zhao G; Chen J; Hu S; Liu X
    J Virol Methods; 2013 Dec; 194(1-2):118-22. PubMed ID: 23994149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of nuclear import and export that control the subcellular localization of class II transactivator.
    Cressman DE; O'Connor WJ; Greer SF; Zhu XS; Ting JP
    J Immunol; 2001 Oct; 167(7):3626-34. PubMed ID: 11564775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nuclear and nucleolar localization signals and their targeting function in phosphatidylinositol 4-kinase PI4K230.
    Kakuk A; Friedländer E; Vereb G; Lisboa D; Bagossi P; Tóth G; Gergely P; Vereb G
    Exp Cell Res; 2008 Aug; 314(13):2376-88. PubMed ID: 18585705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleolar localization of SmMAK16 protein from Schistosoma mansoni is regulated by three distinct signals that function independent of pH or phosphorylation status.
    Hoellerich E; Dunagan C; Maring D; Wong YL; Shouldice D; Stripe J; Kline T; Albert TJ; Milhon JL
    Mol Biochem Parasitol; 2014 Jan; 193(1):9-16. PubMed ID: 24462994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different localization of Hsp105 family proteins in mammalian cells.
    Saito Y; Yamagishi N; Hatayama T
    Exp Cell Res; 2007 Oct; 313(17):3707-17. PubMed ID: 17643418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The mechanism of Stat3 nuclear import].
    Ye ZD; Shen BF; Song L
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):299-301. PubMed ID: 15969127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of PTH1R constructs in LLC-PK1 cells: protein nuclear targeting is mediated by the PTH1R NLS.
    Patterson EK; Watson PH; Hodsman AB; Hendy GN; Canaff L; Bringhurst FR; Poschwatta CH; Fraher LJ
    Bone; 2007 Oct; 41(4):603-10. PubMed ID: 17627912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signals for bidirectional nucleocytoplasmic transport in the duck hepatitis B virus capsid protein.
    Mabit H; Breiner KM; Knaust A; Zachmann-Brand B; Schaller H
    J Virol; 2001 Feb; 75(4):1968-77. PubMed ID: 11160696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LYRIC/AEG-1 is targeted to different subcellular compartments by ubiquitinylation and intrinsic nuclear localization signals.
    Thirkettle HJ; Girling J; Warren AY; Mills IG; Sahadevan K; Leung H; Hamdy F; Whitaker HC; Neal DE
    Clin Cancer Res; 2009 May; 15(9):3003-13. PubMed ID: 19383828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fragile X mental retardation protein FMRP binds mRNAs in the nucleus.
    Kim M; Bellini M; Ceman S
    Mol Cell Biol; 2009 Jan; 29(1):214-28. PubMed ID: 18936162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global enhancement of nuclear localization-dependent nuclear transport in transformed cells.
    Kuusisto HV; Wagstaff KM; Alvisi G; Roth DM; Jans DA
    FASEB J; 2012 Mar; 26(3):1181-93. PubMed ID: 22155563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early alteration of nucleocytoplasmic traffic induced by some RNA viruses.
    Belov GA; Evstafieva AG; Rubtsov YP; Mikitas OV; Vartapetian AB; Agol VI
    Virology; 2000 Sep; 275(2):244-8. PubMed ID: 10998323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear localization of the Hermes transposase depends on basic amino acid residues at the N-terminus of the protein.
    Michel K; Atkinson PW
    J Cell Biochem; 2003 Jul; 89(4):778-90. PubMed ID: 12858343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A set of enhanced green fluorescent protein concatemers for quantitative determination of nuclear localization signal strength.
    Böhm J; Thavaraja R; Giehler S; Nalaskowski MM
    Anal Biochem; 2017 Sep; 533():48-55. PubMed ID: 28669708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of a predicted nuclear localization signal: implications for the intracellular localization and function of the Saccharomyces cerevisiae RNA-binding protein Scp160.
    Brykailo MA; McLane LM; Fridovich-Keil J; Corbett AH
    Nucleic Acids Res; 2007; 35(20):6862-9. PubMed ID: 17933776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The intracellular mobility of nuclear import receptors and NLS cargoes.
    Wu J; Corbett AH; Berland KM
    Biophys J; 2009 May; 96(9):3840-9. PubMed ID: 19413990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of nucleocytoplasmic localizatioin of the atDjC6 chaperone protein.
    Suo Y; Miernyk JA
    Protoplasma; 2004 Oct; 224(1-2):79-89. PubMed ID: 15726812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of intracellular trafficking and interactions of cytoplasmic HIV-1 Rev mutants in living cells.
    Stauber RH; Afonina E; Gulnik S; Erickson J; Pavlakis GN
    Virology; 1998 Nov; 251(1):38-48. PubMed ID: 9813201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression.
    McConnell BV; Koto K; Gutierrez-Hartmann A
    Mol Cancer; 2011 Jun; 10():75. PubMed ID: 21682918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.