BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26033160)

  • 1. A Rapid and High-Throughput Assay for the Estimation of Conversions of Ene-Reductase-Catalysed Reactions.
    Forchin MC; Crotti M; Gatti FG; Parmeggiani F; Brenna E; Monti D
    Chembiochem; 2015 Jul; 16(11):1571-3. PubMed ID: 26033160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP(+) to NAD(.).
    Huang R; Chen H; Zhong C; Kim JE; Zhang YH
    Sci Rep; 2016 Sep; 6():32644. PubMed ID: 27587230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays.
    Chamchoy K; Pakotiprapha D; Pumirat P; Leartsakulpanich U; Boonyuen U
    BMC Biochem; 2019 Apr; 20(1):4. PubMed ID: 30961528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Reduction of (R)-Carvone through a Thermostable and Organic-Solvent-Tolerant Ene-Reductase.
    Tischler D; Gädke E; Eggerichs D; Gomez Baraibar A; Mügge C; Scholtissek A; Paul CE
    Chembiochem; 2020 Apr; 21(8):1217-1225. PubMed ID: 31692216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved strategies for electrochemical 1,4-NAD(P)H
    Morrison CS; Armiger WB; Dodds DR; Dordick JS; Koffas MAG
    Biotechnol Adv; 2018; 36(1):120-131. PubMed ID: 29030132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the stereochemical course of ene reductase-catalysed reactions by deuterium labelling.
    Brenna E; Fronza G; Fuganti C; Parmeggiani F
    Isotopes Environ Health Stud; 2015; 51(1):24-32. PubMed ID: 25675259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-time dynamics of batch-wise enzymatic cycling system composed of two kinds of dehydrogenase mediated by NAD(P)H for mass production of chiral hydroxyl compounds.
    Yamane T
    J Biosci Bioeng; 2019 Sep; 128(3):337-343. PubMed ID: 30956102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput colorimetric assay for screening halohydrin dehalogenase saturation mutagenesis libraries.
    Tang L; Li Y; Wang X
    J Biotechnol; 2010 Jun; 147(3-4):164-8. PubMed ID: 20399816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase.
    Baud D; Ladkau N; Moody TS; Ward JM; Hailes HC
    Chem Commun (Camb); 2015 Dec; 51(97):17225-8. PubMed ID: 26458082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-throughput colorimetric assay to characterize the enzyme kinetic and cellular activity of spermidine/spermine N1-acetyltransferase 1.
    Lin HJ; Lien YC; Hsu CH
    Anal Biochem; 2010 Dec; 407(2):226-32. PubMed ID: 20692222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods.
    Sharma VK; Hutchison JM; Allgeier AM
    ChemSusChem; 2022 Nov; 15(22):e202200888. PubMed ID: 36129761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of an ene-reductase from Corynebacterium casei.
    Wu S; Ma X; Yan H
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130427. PubMed ID: 38428763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase.
    Ratnam K; Ma H; Penning TM
    Biochemistry; 1999 Jun; 38(24):7856-64. PubMed ID: 10387026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and Application of a Robust Glucose Dehydrogenase from
    Shah S; Sunder AV; Singh P; Wangikar PP
    Indian J Microbiol; 2020 Mar; 60(1):87-95. PubMed ID: 32089578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases.
    Nidetzky B; Mayr P; Hadwiger P; Stütz AE
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.