BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26033381)

  • 1. Vertical laryngeal position and oral pressure variations during resonance tube phonation in water and in air. A pilot study.
    Wistbacka G; Sundberg J; Simberg S
    Logoped Phoniatr Vocol; 2016 Oct; 41(3):117-23. PubMed ID: 26033381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study.
    Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on vocal fold collision and phonation threshold pressure of resonance tube phonation with tube end in water.
    Enflo L; Sundberg J; Romedahl C; McAllister A
    J Speech Lang Hear Res; 2013 Oct; 56(5):1530-8. PubMed ID: 23838993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonation into a tube as a voice training method: acoustic and physiologic observations.
    Laukkanen AM; Lindholm P; Vilkman E
    Folia Phoniatr Logop; 1995; 47(6):331-8. PubMed ID: 8868938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air Pressure and Contact Quotient Measures During Different Semioccluded Postures in Subjects With Different Voice Conditions.
    Guzmán M; Castro C; Madrid S; Olavarria C; Leiva M; Muñoz D; Jaramillo E; Laukkanen AM
    J Voice; 2016 Nov; 30(6):759.e1-759.e10. PubMed ID: 26526005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Stressful Is "Deep Bubbling"?
    Tyrmi J; Laukkanen AM
    J Voice; 2017 Mar; 31(2):262.e1-262.e6. PubMed ID: 27292094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pilot Study Assessing the Therapeutic Potential of a Vibratory Positive Expiratory Pressure Device (Acapella Choice) in the Treatment of Voice Disorders.
    Saccente-Kennedy B; Amarante Andrade P; Epstein R
    J Voice; 2020 May; 34(3):487.e21-487.e30. PubMed ID: 32389238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immediate effects of straw phonation in air or water on the laryngeal function and configuration of female speech-language pathology students visualised with strobovideolaryngoscopy: A randomised controlled trial.
    Meerschman I; D'haeseleer E; Kissel I; De Vriese C; Tomassen P; Dochy F; Pieters K; Claeys S; Sataloff R; Van Lierde K
    Int J Lang Commun Disord; 2023 May; 58(3):944-958. PubMed ID: 36722126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS; Quinney DM
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Do Tube Diameter and Vocal Tract Configuration Affect Oral Pressure Oscillation Characteristics Caused by Bubbling During Water Resistance Therapy?
    Guzman M; Castro C; Acevedo K; Moran C; Espinoza V; Quezada C
    J Voice; 2021 Nov; 35(6):935.e1-935.e11. PubMed ID: 32362578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The shouted voice: A pilot study of laryngeal physiology under extreme aerodynamic pressure.
    Lagier A; Legou T; Galant C; Amy de La Bretèque B; Meynadier Y; Giovanni A
    Logoped Phoniatr Vocol; 2017 Dec; 42(4):141-145. PubMed ID: 27484505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Tube Phonation in Water-the Effect of Tube Diameter and Water Depth on Back Pressure and Bubble Characteristics at Different Airflows.
    Wistbacka G; Andrade PA; Simberg S; Hammarberg B; Södersten M; Švec JG; Granqvist S
    J Voice; 2018 Jan; 32(1):126.e11-126.e22. PubMed ID: 28528785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vocal tract area functions and formant frequencies in opera tenors' modal and falsetto registers.
    Echternach M; Sundberg J; Baumann T; Markl M; Richter B
    J Acoust Soc Am; 2011 Jun; 129(6):3955-63. PubMed ID: 21682417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Computational Modeling of the Effects of Voice Therapy Using Tubes.
    Horáček J; Radolf V; Laukkanen AM
    J Speech Lang Hear Res; 2019 Jul; 62(7):2227-2244. PubMed ID: 31251676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laryngeal and pharyngeal activity during semioccluded vocal tract postures in subjects diagnosed with hyperfunctional dysphonia.
    Guzman M; Castro C; Testart A; Muñoz D; Gerhard J
    J Voice; 2013 Nov; 27(6):709-16. PubMed ID: 24075912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The resonance tube method in voice therapy: description and practical implementations.
    Simberg S; Laine A
    Logoped Phoniatr Vocol; 2007; 32(4):165-70. PubMed ID: 17852715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Straw Phonation Through Tubes of Varied Lengths on Sustained Vowels in Normal-Voiced Participants.
    Mills RD; Rivedal S; DeMorett C; Maples G; Jiang JJ
    J Voice; 2018 May; 32(3):386.e21-386.e29. PubMed ID: 28648485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do laryngeal and respiratory functions contribute to differentiate actors/actresses and untrained voices?
    Master S; Guzman M; Azócar MJ; Muñoz D; Bortnem C
    J Voice; 2015 May; 29(3):333-45. PubMed ID: 25795357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of measurement of a voice range profile with a semi-occluded vocal tract.
    Titze IR; Hunter EJ
    Logoped Phoniatr Vocol; 2011 Apr; 36(1):32-9. PubMed ID: 21244326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.