These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 26033432)
1. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change. Huang G; Rymer PD; Duan H; Smith RA; Tissue DT Glob Chang Biol; 2015 Oct; 21(10):3800-13. PubMed ID: 26033432 [TBL] [Abstract][Full Text] [Related]
2. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change. Aspinwall MJ; Loik ME; Resco de Dios V; Tjoelker MG; Payton PR; Tissue DT Plant Cell Environ; 2015 Sep; 38(9):1752-64. PubMed ID: 25132508 [TBL] [Abstract][Full Text] [Related]
3. Effects of elevated carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient. Duan H; Ontedhu J; Milham P; Lewis JD; Tissue DT Tree Physiol; 2019 Dec; 39(11):1821-1837. PubMed ID: 31728540 [TBL] [Abstract][Full Text] [Related]
4. Growth temperature modulates the spatial variability of leaf morphology and chemical elements within crowns of climatically divergent Acer rubrum genotypes. Shahba MA; Bauerle WL Tree Physiol; 2009 Jul; 29(7):869-77. PubMed ID: 19364703 [TBL] [Abstract][Full Text] [Related]
5. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature. Wallin G; Hall M; Slaney M; Räntfors M; Medhurst J; Linder S Tree Physiol; 2013 Nov; 33(11):1177-91. PubMed ID: 24169104 [TBL] [Abstract][Full Text] [Related]
6. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change. Dias de Oliveira EA; Siddique KH; Bramley H; Stefanova K; Palta JA Glob Chang Biol; 2015 Feb; 21(2):857-73. PubMed ID: 25330325 [TBL] [Abstract][Full Text] [Related]
7. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Pratt JD; Mooney KA Glob Chang Biol; 2013 Aug; 19(8):2454-66. PubMed ID: 23505064 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Ramírez-Valiente JA; Sánchez-Gómez D; Aranda I; Valladares F Tree Physiol; 2010 May; 30(5):618-27. PubMed ID: 20357344 [TBL] [Abstract][Full Text] [Related]
9. Climate explains population divergence in drought-induced plasticity of functional traits and gene expression in a South African Protea. Akman M; Carlson JE; Latimer AM Mol Ecol; 2021 Jan; 30(1):255-273. PubMed ID: 33098695 [TBL] [Abstract][Full Text] [Related]
11. Genetic adaptation and phenotypic plasticity contribute to greater leaf hydraulic tolerance in response to drought in warmer climates. Blackman CJ; Aspinwall MJ; Tissue DT; Rymer PD Tree Physiol; 2017 May; 37(5):583-592. PubMed ID: 28338733 [TBL] [Abstract][Full Text] [Related]
12. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
13. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Valladares F; Matesanz S; Guilhaumon F; Araújo MB; Balaguer L; Benito-Garzón M; Cornwell W; Gianoli E; van Kleunen M; Naya DE; Nicotra AB; Poorter H; Zavala MA Ecol Lett; 2014 Nov; 17(11):1351-64. PubMed ID: 25205436 [TBL] [Abstract][Full Text] [Related]
14. Plant developmental responses to climate change. Gray SB; Brady SM Dev Biol; 2016 Nov; 419(1):64-77. PubMed ID: 27521050 [TBL] [Abstract][Full Text] [Related]
15. Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Kasurinen A; Biasi C; Holopainen T; Rousi M; Mäenpää M; Oksanen E Tree Physiol; 2012 Jun; 32(6):737-51. PubMed ID: 22363070 [TBL] [Abstract][Full Text] [Related]
16. Climate change, nutrition and immunity: Effects of elevated CO2 and temperature on the immune function of an insect herbivore. Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M J Insect Physiol; 2016 Feb; 85():57-64. PubMed ID: 26678330 [TBL] [Abstract][Full Text] [Related]
17. Leaf trait variation is similar among genotypes of Eucalyptus camaldulensis from differing climates and arises in plastic responses to the seasons rather than water availability. Asao S; Hayes L; Aspinwall MJ; Rymer PD; Blackman C; Bryant CJ; Cullerne D; Egerton JJG; Fan Y; Innes P; Millar AH; Tucker J; Shah S; Wright IJ; Yvon-Durocher G; Tissue D; Atkin OK New Phytol; 2020 Aug; 227(3):780-793. PubMed ID: 32255508 [TBL] [Abstract][Full Text] [Related]
18. Genotypic variation in phenological plasticity: Reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Cooper HF; Grady KC; Cowan JA; Best RJ; Allan GJ; Whitham TG Glob Chang Biol; 2019 Jan; 25(1):187-200. PubMed ID: 30346108 [TBL] [Abstract][Full Text] [Related]
19. The impact of distance and a shifting temperature gradient on genetic connectivity across a heterogeneous landscape. Rossetto M; Thurlby KA; Offord CA; Allen CB; Weston PH BMC Evol Biol; 2011 May; 11():126. PubMed ID: 21586178 [TBL] [Abstract][Full Text] [Related]
20. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Duan H; O'Grady AP; Duursma RA; Choat B; Huang G; Smith RA; Jiang Y; Tissue DT Tree Physiol; 2015 Jul; 35(7):756-70. PubMed ID: 26063706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]