These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 26033432)
21. Will phenotypic plasticity affecting flowering phenology keep pace with climate change? Richardson BA; Chaney L; Shaw NL; Still SM Glob Chang Biol; 2017 Jun; 23(6):2499-2508. PubMed ID: 27739159 [TBL] [Abstract][Full Text] [Related]
22. Intraspecific variation in juvenile tree growth under elevated CO2 alone and with O3: a meta-analysis. Resco de Dios V; Mereed TE; Ferrio JP; Tissue DT; Voltas J Tree Physiol; 2016 Jun; 36(6):682-93. PubMed ID: 27083522 [TBL] [Abstract][Full Text] [Related]
23. Plastic responses to elevated temperature in low and high elevation populations of three grassland species. Frei ER; Ghazoul J; Pluess AR PLoS One; 2014; 9(6):e98677. PubMed ID: 24901500 [TBL] [Abstract][Full Text] [Related]
24. Plant responses to climate in the Cape Floristic Region of South Africa: evidence for adaptive differentiation in the Proteaceae. Carlson JE; Holsinger KE; Prunier R Evolution; 2011 Jan; 65(1):108-24. PubMed ID: 20840595 [TBL] [Abstract][Full Text] [Related]
25. [Effects of elevated temperature and CO Zeng Z; Huan HH; Liu G; Xiao J; Huang YY; Xu X; Dong TF Ying Yong Sheng Tai Xue Bao; 2016 Aug; 27(8):2445-2451. PubMed ID: 29733130 [TBL] [Abstract][Full Text] [Related]
26. Benefits of increasing transpiration efficiency in wheat under elevated CO Christy B; Tausz-Posch S; Tausz M; Richards R; Rebetzke G; Condon A; McLean T; Fitzgerald G; Bourgault M; O'Leary G Glob Chang Biol; 2018 May; 24(5):1965-1977. PubMed ID: 29331062 [TBL] [Abstract][Full Text] [Related]
27. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes). Ramírez-Valiente JA; Koehler K; Cavender-Bares J Tree Physiol; 2015 May; 35(5):521-34. PubMed ID: 25939867 [TBL] [Abstract][Full Text] [Related]
28. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Quentin AG; Crous KY; Barton CV; Ellsworth DS Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960 [TBL] [Abstract][Full Text] [Related]
29. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Wortemann R; Herbette S; Barigah TS; Fumanal B; Alia R; Ducousso A; Gomory D; Roeckel-Drevet P; Cochard H Tree Physiol; 2011 Nov; 31(11):1175-82. PubMed ID: 21989814 [TBL] [Abstract][Full Text] [Related]
30. Jack-and-master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. Mozdzer TJ; Megonigal JP PLoS One; 2012; 7(10):e42794. PubMed ID: 23118844 [TBL] [Abstract][Full Text] [Related]
31. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. Drake JE; Aspinwall MJ; Pfautsch S; Rymer PD; Reich PB; Smith RA; Crous KY; Tissue DT; Ghannoum O; Tjoelker MG Glob Chang Biol; 2015 Jan; 21(1):459-72. PubMed ID: 25378195 [TBL] [Abstract][Full Text] [Related]
32. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Maron JL; Elmendorf SC; Vilà M Evolution; 2007 Aug; 61(8):1912-24. PubMed ID: 17683433 [TBL] [Abstract][Full Text] [Related]
33. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Bresson CC; Vitasse Y; Kremer A; Delzon S Tree Physiol; 2011 Nov; 31(11):1164-74. PubMed ID: 21908436 [TBL] [Abstract][Full Text] [Related]
34. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration. Potosnak MJ; Lestourgeon L; Nunez O Sci Total Environ; 2014 May; 481():352-9. PubMed ID: 24614154 [TBL] [Abstract][Full Text] [Related]
35. Genetic variation for leaf morphology, leaf structure and leaf carbon isotope discrimination in European populations of black poplar (Populus nigra L.). Guet J; Fabbrini F; Fichot R; Sabatti M; Bastien C; Brignolas F Tree Physiol; 2015 Aug; 35(8):850-63. PubMed ID: 26224105 [TBL] [Abstract][Full Text] [Related]
36. Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity. Nunney L J Hered; 2016 Jan; 107(1):15-24. PubMed ID: 26563131 [TBL] [Abstract][Full Text] [Related]
37. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. Xu CY; Salih A; Ghannoum O; Tissue DT J Exp Bot; 2012 Oct; 63(16):5829-41. PubMed ID: 22915750 [TBL] [Abstract][Full Text] [Related]
38. Population variation in the thermal response to climate change reveals differing sensitivity in a benthic shark. Gervais CR; Huveneers C; Rummer JL; Brown C Glob Chang Biol; 2021 Jan; 27(1):108-120. PubMed ID: 33118308 [TBL] [Abstract][Full Text] [Related]
39. Genotypic variation of the interactive effects of elevated temperature and CO De Silva ALC; Senarathna HAKNN; De Costa WAJM Physiol Plant; 2021 Dec; 173(4):2276-2290. PubMed ID: 34609754 [TBL] [Abstract][Full Text] [Related]
40. Genotypic variation in traits linked to climate and aboveground productivity in a widespread C₄ grass: evidence for a functional trait syndrome. Aspinwall MJ; Lowry DB; Taylor SH; Juenger TE; Hawkes CV; Johnson MV; Kiniry JR; Fay PA New Phytol; 2013 Sep; 199(4):966-980. PubMed ID: 23701159 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]