BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26033572)

  • 1. Capillary electrophoretic study of green fluorescent hollow carbon nanoparticles.
    Liu L; Feng F; Hu Q; Paau MC; Liu Y; Chen Z; Bai Y; Guo F; Choi MM
    Electrophoresis; 2015 Sep; 36(17):2110-9. PubMed ID: 26033572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging.
    Gong X; Hu Q; Paau MC; Zhang Y; Shuang S; Dong C; Choi MM
    Nanoscale; 2014 Jul; 6(14):8162-70. PubMed ID: 24924531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of buffer composition on the capillary electrophoretic separation of carbon nanoparticles.
    Baker JS; Colón LA
    J Chromatogr A; 2009 Dec; 1216(52):9048-54. PubMed ID: 19744658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Better understanding of carbon nanoparticles via high-performance liquid chromatography-fluorescence detection and mass spectrometry.
    Hu Q; Paau MC; Choi MM; Zhang Y; Gong X; Zhang L; Liu Y; Yao J
    Electrophoresis; 2014 Sep; 35(17):2454-62. PubMed ID: 24846603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots.
    Hu Q; Paau MC; Zhang Y; Chan W; Gong X; Zhang L; Choi MM
    J Chromatogr A; 2013 Aug; 1304():234-40. PubMed ID: 23885674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic methods for separation of nanoparticles.
    Surugau N; Urban PL
    J Sep Sci; 2009 Jun; 32(11):1889-906. PubMed ID: 19479769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance liquid chromatographic and mass spectrometric analysis of fluorescent carbon nanodots.
    Gong X; Hu Q; Paau MC; Zhang Y; Zhang L; Shuang S; Dong C; Choi MM
    Talanta; 2014 Nov; 129():529-38. PubMed ID: 25127629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical separation of Au/Ag core/shell nanoparticles by capillary electrophoresis.
    Liu FK; Tsai MH; Hsu YC; Chu TC
    J Chromatogr A; 2006 Nov; 1133(1-2):340-6. PubMed ID: 16939685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line enhancement and separation of nanoparticles using capillary electrophoresis.
    Lin KH; Chu TC; Liu FK
    J Chromatogr A; 2007 Aug; 1161(1-2):314-21. PubMed ID: 17559859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions.
    Nilsson C; Harwigsson I; Becker K; Kutter JP; Birnbaum S; Nilsson S
    Electrophoresis; 2010 Jan; 31(3):459-64. PubMed ID: 20119954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis.
    d'Orlyé F; Varenne A; Georgelin T; Siaugue JM; Teste B; Descroix S; Gareil P
    Electrophoresis; 2009 Jul; 30(14):2572-82. PubMed ID: 19593752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary electrophoresis with laser-induced fluorescence detection for the analysis of free and immune-complexed green fluorescent protein.
    Korf GM; Landers JP; O'Kane DJ
    Anal Biochem; 1997 Sep; 251(2):210-8. PubMed ID: 9299018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Technique of Synthesis of Highly Fluorescent Carbon Nanoparticles from Broth Constituent and In-vivo Bioimaging of C. elegans.
    Pramanik A; Kole AK; Krishnaraj RN; Biswas S; Tiwary CS; Varalakshmi P; Rai SK; Kumar BA; Kumbhakar P
    J Fluoresc; 2016 Sep; 26(5):1541-8. PubMed ID: 27380200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-efficiency capillary electrophoresis-based method for characterizing the sizes of Au nanoparticles.
    Liu FK
    J Chromatogr A; 2007 Oct; 1167(2):231-5. PubMed ID: 17850805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of total lipids on human lipoproteins using surfactant-coated multiwalled carbon nanotubes as pseudostationary phase in capillary electrophoresis.
    Su MY; Chen YY; Yang JY; Lin YS; Lin YW; Liu MY
    Electrophoresis; 2014 Apr; 35(7):978-85. PubMed ID: 24132731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of C-reactive protein based on magnetic nanoparticles and capillary zone electrophoresis with laser-induced fluorescence detection.
    Lin YJ; Yang JY; Shu TY; Lin TY; Chen YY; Su MY; Li WJ; Liu MY
    J Chromatogr A; 2013 Nov; 1315():188-94. PubMed ID: 24075015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of the relative mobility of gliadin at low pH by capillary electrophoresis and conventional electrophoretic techniques.
    Rumbo M; Giorgieri SA
    J Capillary Electrophor; 1998; 5(1-2):39-44. PubMed ID: 10327368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic characterization of superparamagnetic nanoparticle-aptamer conjugates: design of new highly specific probes for miniaturized molecular diagnostics.
    Girardot M; d'Orlyé F; Varenne A
    Anal Bioanal Chem; 2014 Feb; 406(4):1089-98. PubMed ID: 23925800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile and novel synthetic method for the preparation of hydroxyl capped fluorescent carbon nanoparticles.
    Khanam A; Tripathi SK; Roy D; Nasim M
    Colloids Surf B Biointerfaces; 2013 Feb; 102():63-9. PubMed ID: 23006553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes as separation carrier in capillary electrophoresis.
    Wang Z; Luo G; Chen J; Xiao S; Wang Y
    Electrophoresis; 2003 Dec; 24(24):4181-8. PubMed ID: 14679565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.