These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 26033622)

  • 1. Mitochondrial function at extreme high altitude.
    Murray AJ; Horscroft JA
    J Physiol; 2016 Mar; 594(5):1137-49. PubMed ID: 26033622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolism and the high-altitude environment.
    Murray AJ
    Exp Physiol; 2016 Jan; 101(1):23-7. PubMed ID: 26315373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.
    Mahalingam S; McClelland GB; Scott GR
    J Physiol; 2017 Jul; 595(14):4785-4801. PubMed ID: 28418073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest.
    Levett DZ; Radford EJ; Menassa DA; Graber EF; Morash AJ; Hoppeler H; Clarke K; Martin DS; Ferguson-Smith AC; Montgomery HE; Grocott MP; Murray AJ;
    FASEB J; 2012 Apr; 26(4):1431-41. PubMed ID: 22186874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
    Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mitochondrial Basis for Adaptive Variation in Aerobic Performance in High-Altitude Deer Mice.
    Scott GR; Guo KH; Dawson NJ
    Integr Comp Biol; 2018 Sep; 58(3):506-518. PubMed ID: 29873740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial function in human skeletal muscle following high-altitude exposure.
    Jacobs RA; Boushel R; Wright-Paradis C; Calbet JA; Robach P; Gnaiger E; Lundby C
    Exp Physiol; 2013 Jan; 98(1):245-55. PubMed ID: 22636256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude.
    Dawson NJ; Lyons SA; Henry DA; Scott GR
    Acta Physiol (Oxf); 2018 May; 223(1):e13030. PubMed ID: 29316265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds.
    Scott GR; Richards JG; Milsom WK
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R1066-74. PubMed ID: 19657102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive increases in respiratory capacity and O
    Dawson NJ; Scott GR
    FASEB J; 2022 Jul; 36(7):e22391. PubMed ID: 35661419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-altitude exposure of three weeks duration increases lung diffusing capacity in humans.
    Agostoni P; Swenson ER; Bussotti M; Revera M; Meriggi P; Faini A; Lombardi C; Bilo G; Giuliano A; Bonacina D; Modesti PA; Mancia G; Parati G;
    J Appl Physiol (1985); 2011 Jun; 110(6):1564-71. PubMed ID: 21436463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxic ventilatory response in successful extreme altitude climbers.
    Bernardi L; Schneider A; Pomidori L; Paolucci E; Cogo A
    Eur Respir J; 2006 Jan; 27(1):165-71. PubMed ID: 16387950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle.
    Jacobs RA; Lundby AK; Fenk S; Gehrig S; Siebenmann C; Flück D; Kirk N; Hilty MP; Lundby C
    J Physiol; 2016 Mar; 594(5):1151-66. PubMed ID: 26339730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of PGC-1α on the topology and rate of superoxide production by the mitochondrial electron transport chain.
    Austin S; Klimcakova E; St-Pierre J
    Free Radic Biol Med; 2011 Dec; 51(12):2243-8. PubMed ID: 21964033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria.
    Jacobs RA; Siebenmann C; Hug M; Toigo M; Meinild AK; Lundby C
    FASEB J; 2012 Dec; 26(12):5192-200. PubMed ID: 22968913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. American medical research expedition to Everest.
    West JB
    High Alt Med Biol; 2010; 11(2):103-10. PubMed ID: 20586594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate during exercise at extreme altitude.
    West JB
    Fed Proc; 1986 Dec; 45(13):2953-7. PubMed ID: 3536595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced lipid-but not carbohydrate-supported mitochondrial respiration in skeletal muscle of PGC-1α overexpressing mice.
    Hoeks J; Arany Z; Phielix E; Moonen-Kornips E; Hesselink MK; Schrauwen P
    J Cell Physiol; 2012 Mar; 227(3):1026-33. PubMed ID: 21520076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis.
    Hochachka PW; Stanley C; Merkt J; Sumar-Kalinowski J
    Respir Physiol; 1983 Jun; 52(3):303-13. PubMed ID: 6612104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of the muscle proteome to exercise at altitude.
    Flueck M
    High Alt Med Biol; 2009; 10(2):183-93. PubMed ID: 19519225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.