These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26033875)

  • 1. Proteomics, biomarkers, and HIV-1: A current perspective.
    Donnelly MR; Ciborowski P
    Proteomics Clin Appl; 2016 Feb; 10(2):110-25. PubMed ID: 26033875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics and HIV.
    Ciborowski P; Fox HS
    Proteomics Clin Appl; 2016 Feb; 10(2):109. PubMed ID: 26836751
    [No Abstract]   [Full Text] [Related]  

  • 3. HIV-1 Nef and host proteome analysis: Current perspective.
    Saxena R; Vekariya U; Tripathi R
    Life Sci; 2019 Feb; 219():322-328. PubMed ID: 30664855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics in the investigation of HIV-1 interactions with host proteins.
    Li M
    Proteomics Clin Appl; 2015 Feb; 9(1-2):221-34. PubMed ID: 25523935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of Cognate Cellular and Viral Ribonucleoprotein Complexes of HIV-1 RNA Applicable to Proteomic Discovery and Molecular Investigations.
    Singh D; Boeras I; Singh G; Boris-Lawrie K
    Methods Mol Biol; 2016; 1354():133-46. PubMed ID: 26714709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving HIV proteome annotation: new features of BioAfrica HIV Proteomics Resource.
    Druce M; Hulo C; Masson P; Sommer P; Xenarios I; Le Mercier P; De Oliveira T
    Database (Oxford); 2016; 2016():. PubMed ID: 27087306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insights into the Disease Progression Control Mechanisms by Comparing Long-Term-Nonprogressors versus Normal-Progressors among HIV-1-Positive Patients Using an Ion Current-Based MS1 Proteomic Profiling.
    Shen X; Nair B; Mahajan SD; Jiang X; Li J; Shen S; Tu C; Hsiao CB; Schwartz SA; Qu J
    J Proteome Res; 2015 Dec; 14(12):5225-39. PubMed ID: 26484939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics Profiling of Autologous Blood and Semen Exosomes from HIV-infected and Uninfected Individuals Reveals Compositional and Functional Variabilities.
    Kaddour H; Lyu Y; Welch JL; Paromov V; Mandape SN; Sakhare SS; Pandhare J; Stapleton JT; Pratap S; Dash C; Okeoma CM
    Mol Cell Proteomics; 2020 Jan; 19(1):78-100. PubMed ID: 31676584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic profiling of HIV-infected T-cells by SWATH mass spectrometry.
    DeBoer J; Wojtkiewicz MS; Haverland N; Li Y; Harwood E; Leshen E; George JW; Ciborowski P; Belshan M
    Virology; 2018 Mar; 516():246-257. PubMed ID: 29425767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV and Proteomics: What We Have Learned from High Throughput Studies.
    Grabowska K; Harwood E; Ciborowski P
    Proteomics Clin Appl; 2021 Jan; 15(1):e2000040. PubMed ID: 32978881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.
    Colquhoun DR; Lyashkov AE; Ubaida Mohien C; Aquino VN; Bullock BT; Dinglasan RR; Agnew BJ; Graham DR
    Proteomics; 2015 Jun; 15(12):2066-77. PubMed ID: 25914232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery proteomics: application to HIV infection.
    Haarburger D; Pillay TS
    J Clin Pathol; 2010 Apr; 63(4):285-7. PubMed ID: 20354200
    [No Abstract]   [Full Text] [Related]  

  • 13. Proteomic Characterization of Exosomes from HIV-1-Infected Cells.
    Li M; Ramratnam B
    Methods Mol Biol; 2016; 1354():311-26. PubMed ID: 26714721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions.
    Li L; Li HS; Pauza CD; Bukrinsky M; Zhao RY
    Cell Res; 2005; 15(11-12):923-34. PubMed ID: 16354571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The landscape of viral proteomics and its potential to impact human health.
    Oxford KL; Wendler JP; McDermott JE; White Iii RA; Powell JD; Jacobs JM; Adkins JN; Waters KM
    Expert Rev Proteomics; 2016 Jun; 13(6):579-91. PubMed ID: 27133506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIV/AIDS pathogenesis and treatment options focusing on the viral entry inhibitors.
    Jones R; Gazzard B
    Expert Rev Anti Infect Ther; 2006 Apr; 4(2):303-12. PubMed ID: 16597210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emerging role of long non-coding RNAs in HIV infection.
    Lazar DC; Morris KV; Saayman SM
    Virus Res; 2016 Jan; 212():114-26. PubMed ID: 26221763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of T-Cell Spatial Proteomics and the Influence of HIV Expression.
    Oom AL; Stoneham CA; Lewinski MK; Richards A; Wozniak JM; Shams-Ud-Doha K; Gonzalez DJ; Krogan NJ; Guatelli J
    Mol Cell Proteomics; 2022 Mar; 21(3):100194. PubMed ID: 35017099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression.
    Li Y; Belshan M
    Viruses; 2016 Feb; 8(2):. PubMed ID: 26891316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome analysis of the HIV-1 Gag interactome.
    Engeland CE; Brown NP; Börner K; Schümann M; Krause E; Kaderali L; Müller GA; Kräusslich HG
    Virology; 2014 Jul; 460-461():194-206. PubMed ID: 25010285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.