These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26033917)

  • 1. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.
    Lai Q; Paskevicius M; Sheppard DA; Buckley CE; Thornton AW; Hill MR; Gu Q; Mao J; Huang Z; Liu HK; Guo Z; Banerjee A; Chakraborty S; Ahuja R; Aguey-Zinsou KF
    ChemSusChem; 2015 Sep; 8(17):2789-825. PubMed ID: 26033917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyaniline as a material for hydrogen storage applications.
    Attia NF; Geckeler KE
    Macromol Rapid Commun; 2013 Jul; 34(13):1043-55. PubMed ID: 23744735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials.
    Sun Q; Wang N; Xu Q; Yu J
    Adv Mater; 2020 Nov; 32(44):e2001818. PubMed ID: 32638425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon- and Nitrogen-Based Organic Frameworks.
    Sakaushi K; Antonietti M
    Acc Chem Res; 2015 Jun; 48(6):1591-600. PubMed ID: 26000989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen storage in metal-organic frameworks.
    Murray LJ; Dincă M; Long JR
    Chem Soc Rev; 2009 May; 38(5):1294-314. PubMed ID: 19384439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.
    Preuster P; Papp C; Wasserscheid P
    Acc Chem Res; 2017 Jan; 50(1):74-85. PubMed ID: 28004916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-state hydrogen rich boron-nitrogen compounds for energy storage.
    Kumar R; Karkamkar A; Bowden M; Autrey T
    Chem Soc Rev; 2019 Oct; 48(21):5350-5380. PubMed ID: 31528877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.
    de Jongh PE; Adelhelm P
    ChemSusChem; 2010 Dec; 3(12):1332-48. PubMed ID: 21080405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.
    Yang J; Sudik A; Wolverton C; Siegel DJ
    Chem Soc Rev; 2010 Feb; 39(2):656-75. PubMed ID: 20111786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites.
    Dincă M; Long JR
    Angew Chem Int Ed Engl; 2008; 47(36):6766-79. PubMed ID: 18688902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks.
    Sumida K; Stück D; Mino L; Chai JD; Bloch ED; Zavorotynska O; Murray LJ; Dincă M; Chavan S; Bordiga S; Head-Gordon M; Long JR
    J Am Chem Soc; 2013 Jan; 135(3):1083-91. PubMed ID: 23244036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoporous polymers for hydrogen storage.
    Germain J; Fréchet JM; Svec F
    Small; 2009 May; 5(10):1098-111. PubMed ID: 19360719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation.
    Sanyal U; Demirci UB; Jagirdar BR; Miele P
    ChemSusChem; 2011 Dec; 4(12):1731-9. PubMed ID: 22069163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover.
    Li Y; Yang RT
    J Am Chem Soc; 2006 Jun; 128(25):8136-7. PubMed ID: 16787068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover.
    Li Y; Yang RT
    J Am Chem Soc; 2006 Jan; 128(3):726-7. PubMed ID: 16417355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage.
    Zheng J; Wang CG; Zhou H; Ye E; Xu J; Li Z; Loh XJ
    Research (Wash D C); 2021; 2021():3750689. PubMed ID: 33623916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.
    Tylianakis E; Klontzas E; Froudakis GE
    Nanoscale; 2011 Mar; 3(3):856-69. PubMed ID: 21218227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale engineering of solid-state materials for boosting hydrogen storage.
    Wang Y; Xue Y; Züttel A
    Chem Soc Rev; 2024 Jan; 53(2):972-1003. PubMed ID: 38111973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.