These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26033935)
1. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs. Ikeda K; Ito A; Sato M; Kanno S; Kawabe Y; Kamihira M J Tissue Eng Regen Med; 2017 May; 11(5):1322-1331. PubMed ID: 26033935 [TBL] [Abstract][Full Text] [Related]
2. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts. Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of contractile force generation of artificial skeletal muscle tissues by mild and transient heat treatment. Sato M; Ikeda K; Kanno S; Ito A; Kawabe Y; Kamihira M Curr Pharm Biotechnol; 2014; 14(13):1083-7. PubMed ID: 24725127 [TBL] [Abstract][Full Text] [Related]
4. Effect of cell-extracellular matrix interaction on myogenic characteristics and artificial skeletal muscle tissue. Ding R; Horie M; Nagasaka S; Ohsumi S; Shimizu K; Honda H; Nagamori E; Fujita H; Kawamoto T J Biosci Bioeng; 2020 Jul; 130(1):98-105. PubMed ID: 32278672 [TBL] [Abstract][Full Text] [Related]
5. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045 [TBL] [Abstract][Full Text] [Related]
6. Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. Ebrahimi M; Ostrovidov S; Salehi S; Kim SB; Bae H; Khademhosseini A J Tissue Eng Regen Med; 2018 Nov; 12(11):2151-2163. PubMed ID: 30048044 [TBL] [Abstract][Full Text] [Related]
7. Biocompatible Elastic Conductive Films Significantly Enhanced Myogenic Differentiation of Myoblast for Skeletal Muscle Regeneration. Dong R; Zhao X; Guo B; Ma PX Biomacromolecules; 2017 Sep; 18(9):2808-2819. PubMed ID: 28792734 [TBL] [Abstract][Full Text] [Related]
8. Development and evaluation of a removable tissue-engineered muscle with artificial tendons. Nakamura T; Takagi S; Kamon T; Yamasaki KI; Fujisato T J Biosci Bioeng; 2017 Feb; 123(2):265-271. PubMed ID: 27622541 [TBL] [Abstract][Full Text] [Related]
9. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model. Gawlitta D; Boonen KJ; Oomens CW; Baaijens FP; Bouten CV Tissue Eng Part A; 2008 Jan; 14(1):161-71. PubMed ID: 18333814 [TBL] [Abstract][Full Text] [Related]
10. Effect of heat stress on contractility of tissue-engineered artificial skeletal muscle. Takagi S; Nakamura T; Fujisato T J Artif Organs; 2018 Jun; 21(2):207-214. PubMed ID: 29362934 [TBL] [Abstract][Full Text] [Related]
11. Boron nitride nanotube-functionalised myoblast/microfibre constructs: a nanotech-assisted tissue-engineered platform for muscle stimulation. Danti S; Ciofani G; Pertici G; Moscato S; D'Alessandro D; Ciabatti E; Chiellini F; D'Acunto M; Mattoli V; Berrettini S J Tissue Eng Regen Med; 2015 Jul; 9(7):847-51. PubMed ID: 24596180 [TBL] [Abstract][Full Text] [Related]
13. Cell Density and Joint microRNA-133a and microRNA-696 Inhibition Enhance Differentiation and Contractile Function of Engineered Human Skeletal Muscle Tissues. Cheng CS; Ran L; Bursac N; Kraus WE; Truskey GA Tissue Eng Part A; 2016 Apr; 22(7-8):573-83. PubMed ID: 26891613 [TBL] [Abstract][Full Text] [Related]
14. In vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model. Ikeda K; Ito A; Imada R; Sato M; Kawabe Y; Kamihira M Sci Rep; 2017 Mar; 7():44570. PubMed ID: 28300163 [TBL] [Abstract][Full Text] [Related]
15. A long-lasting vitamin C derivative, ascorbic acid 2-phosphate, increases myogenin gene expression and promotes differentiation in L6 muscle cells. Mitsumoto Y; Liu Z; Klip A Biochem Biophys Res Commun; 1994 Feb; 199(1):394-402. PubMed ID: 8123041 [TBL] [Abstract][Full Text] [Related]
16. IGF-I and vitamin C promote myogenic differentiation of mouse and human skeletal muscle cells at low temperatures. Shima A; Pham J; Blanco E; Barton ER; Sweeney HL; Matsuda R Exp Cell Res; 2011 Feb; 317(3):356-66. PubMed ID: 21070767 [TBL] [Abstract][Full Text] [Related]
17. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels. Bettadapur A; Suh GC; Geisse NA; Wang ER; Hua C; Huber HA; Viscio AA; Kim JY; Strickland JB; McCain ML Sci Rep; 2016 Jun; 6():28855. PubMed ID: 27350122 [TBL] [Abstract][Full Text] [Related]
18. Biofunctional hydrogels for skeletal muscle constructs. Salimath AS; García AJ J Tissue Eng Regen Med; 2016 Nov; 10(11):967-976. PubMed ID: 24616405 [TBL] [Abstract][Full Text] [Related]
19. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury. Milanesi A; Lee JW; Kim NH; Liu YY; Yang A; Sedrakyan S; Kahng A; Cervantes V; Tripuraneni N; Cheng SY; Perin L; Brent GA Endocrinology; 2016 Jan; 157(1):4-15. PubMed ID: 26451739 [TBL] [Abstract][Full Text] [Related]
20. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V. Fujita H; Shimizu K; Nagamori E Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]