BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 26034201)

  • 1. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole.
    Vogel PA; Yang X; Moss NG; Arendshorst WJ
    Hypertension; 2015 Aug; 66(2):374-81. PubMed ID: 26034201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Store-operated Ca2+ entry is exaggerated in fresh preglomerular vascular smooth muscle cells of SHR.
    Fellner SK; Arendshorst WJ
    Kidney Int; 2002 Jun; 61(6):2132-41. PubMed ID: 12028453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles.
    Li L; Lai EY; Wellstein A; Welch WJ; Wilcox CS
    Am J Physiol Renal Physiol; 2016 Jun; 310(11):F1197-205. PubMed ID: 27053691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium recruitment in renal vasculature: NE effects on blood flow and cytosolic calcium concentration.
    Salomonsson M; Arendshorst WJ
    Am J Physiol; 1999 May; 276(5):F700-10. PubMed ID: 10330052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles.
    Howitt L; Kuo IY; Ellis A; Chaston DJ; Shin HS; Hansen PB; Hill CE
    Cardiovasc Res; 2013 Jun; 98(3):449-57. PubMed ID: 23436820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange.
    Fellner SK; Arendshorst WJ
    Am J Physiol Renal Physiol; 2008 Jan; 294(1):F212-9. PubMed ID: 17977908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of tyrosine kinase blockade on norepinephrine-induced cytosolic calcium response in rat afferent arterioles.
    Salomonsson M; Arendshorst WJ
    Am J Physiol Renal Physiol; 2004 May; 286(5):F866-74. PubMed ID: 15075182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-gated Ca2+ entry and ryanodine receptor Ca2+-induced Ca2+ release in preglomerular arterioles.
    Fellner SK; Arendshorst WJ
    Am J Physiol Renal Physiol; 2007 May; 292(5):F1568-72. PubMed ID: 17190906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin II-induced Ca(2+) influx in renal afferent and efferent arterioles: differing roles of voltage-gated and store-operated Ca(2+) entry.
    Loutzenhiser K; Loutzenhiser R
    Circ Res; 2000 Sep; 87(7):551-7. PubMed ID: 11009559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ channel subtypes and pharmacology in the kidney.
    Hayashi K; Wakino S; Sugano N; Ozawa Y; Homma K; Saruta T
    Circ Res; 2007 Feb; 100(3):342-53. PubMed ID: 17307972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-gated calcium channels are involved in the regulation of calcium oscillations in vascular smooth muscle cells from isolated porcine retinal arterioles.
    Misfeldt MW; Aalkjaer C; Simonsen U; Bek T
    Exp Eye Res; 2010 Jul; 91(1):69-75. PubMed ID: 20412795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II Ca2+ signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways.
    Fellner SK; Arendshorst WJ
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F785-91. PubMed ID: 15598842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles.
    Liu ZZ; Mathia S; Pahlitzsch T; Wennysia IC; Persson PB; Lai EY; Högner A; Xu MZ; Schubert R; Rosenberger C; Patzak A
    Am J Physiol Renal Physiol; 2017 May; 312(5):F908-F916. PubMed ID: 28052871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats.
    Tabet F; Savoia C; Schiffrin EL; Touyz RM
    J Cardiovasc Pharmacol; 2004 Aug; 44(2):200-8. PubMed ID: 15243301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles.
    Guan Z; Wang F; Cui X; Inscho EW
    Acta Physiol (Oxf); 2018 Feb; 222(2):. PubMed ID: 28640982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline: possible role of TRPC channels.
    Salomonsson M; Braunstein TH; Holstein-Rathlou NH; Jensen LJ
    Acta Physiol (Oxf); 2010 Nov; 200(3):265-78. PubMed ID: 20426773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles.
    Uhrenholt TR; Schjerning J; Vanhoutte PM; Jensen BL; Skøtt O
    Am J Physiol Renal Physiol; 2007 Apr; 292(4):F1124-31. PubMed ID: 17148782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion.
    Moss NG; Vogel PA; Kopple TE; Arendshorst WJ
    Am J Physiol Renal Physiol; 2013 Sep; 305(6):F830-8. PubMed ID: 23884143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myogenic contraction in rat skeletal muscle arterioles: smooth muscle membrane potential and Ca(2+) signaling.
    Kotecha N; Hill MA
    Am J Physiol Heart Circ Physiol; 2005 Oct; 289(4):H1326-34. PubMed ID: 15863456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraluminal pressure triggers myogenic response via activation of calcium spark and calcium-activated chloride channel in rat renal afferent arteriole.
    Yip KP; Balasubramanian L; Kan C; Wang L; Liu R; Ribeiro-Silva L; Sham JSK
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1592-F1600. PubMed ID: 30089032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.