BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26034213)

  • 21. Defining the Metabolic Pathways and Host-Derived Carbon Substrates Required for Francisella tularensis Intracellular Growth.
    Radlinski LC; Brunton J; Steele S; Taft-Benz S; Kawula TH
    mBio; 2018 Nov; 9(6):. PubMed ID: 30459188
    [No Abstract]   [Full Text] [Related]  

  • 22. The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression.
    Chong A; Wehrly TD; Nair V; Fischer ER; Barker JR; Klose KE; Celli J
    Infect Immun; 2008 Dec; 76(12):5488-99. PubMed ID: 18852245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IglC and PdpA are important for promoting Francisella invasion and intracellular growth in epithelial cells.
    Law HT; Sriram A; Fevang C; Nix EB; Nano FE; Guttman JA
    PLoS One; 2014; 9(8):e104881. PubMed ID: 25115488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RipA, a cytoplasmic membrane protein conserved among Francisella species, is required for intracellular survival.
    Fuller JR; Craven RR; Hall JD; Kijek TM; Taft-Benz S; Kawula TH
    Infect Immun; 2008 Nov; 76(11):4934-43. PubMed ID: 18765722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular bases of proliferation of Francisella tularensis in arthropod vectors.
    Asare R; Akimana C; Jones S; Abu Kwaik Y
    Environ Microbiol; 2010 Sep; 12(9):2587-612. PubMed ID: 20482589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Listeria intracellular growth and virulence require host-derived lipoic acid.
    O'Riordan M; Moors MA; Portnoy DA
    Science; 2003 Oct; 302(5644):462-4. PubMed ID: 14564012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm.
    Santic M; Molmeret M; Klose KE; Jones S; Kwaik YA
    Cell Microbiol; 2005 Jul; 7(7):969-79. PubMed ID: 15953029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Interrelations between the infective agents of tularemia and listeriosis in vitro and in vivo].
    Pomanskaia LA
    Zh Mikrobiol Epidemiol Immunobiol; 1970 Apr; 47(4):36-42. PubMed ID: 4991082
    [No Abstract]   [Full Text] [Related]  

  • 29. Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium.
    Wallet P; Lagrange B; Henry T
    Curr Top Microbiol Immunol; 2016; 397():229-56. PubMed ID: 27460813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life of Listeria monocytogenes in the host cells' cytosol.
    Joseph B; Goebel W
    Microbes Infect; 2007 Aug; 9(10):1188-95. PubMed ID: 17719818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Janus kinase 3 activity is necessary for phosphorylation of cytosolic phospholipase A2 and prostaglandin E2 synthesis by macrophages infected with Francisella tularensis live vaccine strain.
    Brummett AM; Navratil AR; Bryan JD; Woolard MD
    Infect Immun; 2014 Mar; 82(3):970-82. PubMed ID: 24343645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Will the enigma of Francisella tularensis virulence soon be solved?
    Titball RW; Johansson A; Forsman M
    Trends Microbiol; 2003 Mar; 11(3):118-23. PubMed ID: 12648943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for
    Chen GY; McDougal CE; D'Antonio MA; Portman JL; Sauer JD
    mBio; 2017 Mar; 8(2):. PubMed ID: 28325762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of Metabolic Adaptations in
    Ziveri J; Barel M; Charbit A
    Front Cell Infect Microbiol; 2017; 7():96. PubMed ID: 28401066
    [No Abstract]   [Full Text] [Related]  

  • 35. Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages.
    Maier TM; Casey MS; Becker RH; Dorsey CW; Glass EM; Maltsev N; Zahrt TC; Frank DW
    Infect Immun; 2007 Nov; 75(11):5376-89. PubMed ID: 17682043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth.
    Eshraghi A; Kim J; Walls AC; Ledvina HE; Miller CN; Ramsey KM; Whitney JC; Radey MC; Peterson SB; Ruhland BR; Tran BQ; Goo YA; Goodlett DR; Dove SL; Celli J; Veesler D; Mougous JD
    Cell Host Microbe; 2016 Nov; 20(5):573-583. PubMed ID: 27832588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication.
    Chong A; Child R; Wehrly TD; Rockx-Brouwer D; Qin A; Mann BJ; Celli J
    PLoS One; 2013; 8(6):e67965. PubMed ID: 23840797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying Francisella tularensis genes required for growth in host cells.
    Brunton J; Steele S; Miller C; Lovullo E; Taft-Benz S; Kawula T
    Infect Immun; 2015 Aug; 83(8):3015-25. PubMed ID: 25987704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative proteome profiling of host-pathogen interactions: insights into the adaptation mechanisms of Francisella tularensis in the host cell environment.
    Pávková I; Brychta M; Strašková A; Schmidt M; Macela A; Stulík J
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):10103-15. PubMed ID: 24162084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC.
    Lenco J; Hubálek M; Larsson P; Fucíková A; Brychta M; Macela A; Stulík J
    FEMS Microbiol Lett; 2007 Apr; 269(1):11-21. PubMed ID: 17227466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.