These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26034341)

  • 1. Biologic Potential of Calcium Phosphate Biopowders Produced via Decomposition Combustion Synthesis.
    Vollmer N; King KB; Ayers R
    Ceram Int; 2015 Jul; 41(6):7735-7744. PubMed ID: 26034341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial activity and biologic potential of silver-substituted calcium phosphate constructs produced with self-propagating high-temperature synthesis.
    Vollmer NL; Spear JR; Ayers RA
    J Mater Sci Mater Med; 2016 Jun; 27(6):104. PubMed ID: 27094319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
    Zhou Z; Buchanan F; Mitchell C; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications.
    Yan LP; Silva-Correia J; Correia C; Caridade SG; Fernandes EM; Sousa RA; Mano JF; Oliveira JM; Oliveira AL; Reis RL
    Nanomedicine (Lond); 2013 Mar; 8(3):359-78. PubMed ID: 23259755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute.
    Wu Y; Jiang W; Wen X; He B; Zeng X; Wang G; Gu Z
    Biomed Mater; 2010 Feb; 5(1):15001. PubMed ID: 20057017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetracalcium phosphate and biphasic tetracalcium phosphate/tricalcium phosphate powders' effects evaluation on human osteoblasts.
    Ghezzi B; Parisi L; Vurro F; Alfieri I; Toffoli A; Meglioli M; Mozzoni B; Ghiacci G; Macaluso GM
    Minerva Stomatol; 2020 Apr; 69(2):87-94. PubMed ID: 32181607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies.
    Chai YC; Carlier A; Bolander J; Roberts SJ; Geris L; Schrooten J; Van Oosterwyck H; Luyten FP
    Acta Biomater; 2012 Nov; 8(11):3876-87. PubMed ID: 22796326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control.
    Wagner DE; Jones AD; Zhou H; Bhaduri SB
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1710-9. PubMed ID: 23827628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of collagen with calcium phosphate promoted osteogenic responses of osteoblast-like MG63 cells.
    Hong YJ; Chun JS; Lee WK
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):245-53. PubMed ID: 21177080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors.
    Mechiche Alami S; Rammal H; Boulagnon-Rombi C; Velard F; Lazar F; Drevet R; Laurent Maquin D; Gangloff SC; Hemmerlé J; Voegel JC; Francius G; Schaaf P; Boulmedais F; Kerdjoudj H
    Acta Biomater; 2017 Feb; 49():575-589. PubMed ID: 27888100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparing nano-calcium phosphate particles via a biologically friendly pathway.
    Hu Q; Ji H; Liu Y; Zhang M; Xu X; Tang R
    Biomed Mater; 2010 Aug; 5(4):041001. PubMed ID: 20603529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast-oriented differentiation of BMSCs by co-culturing with composite scaffolds constructed using silicon-substituted calcium phosphate, autogenous fine particulate bone powder and alginate
    Tian Y; Cui LH; Xiang SY; Xu WX; Chen DC; Fu R; Zhou CL; Liu XQ; Wang YF; Wang XT
    Oncotarget; 2017 Oct; 8(51):88308-88319. PubMed ID: 29179436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn+2.
    Santos MH; Valerio P; Goes AM; Leite MF; Heneine LG; Mansur HS
    Biomed Mater; 2007 Jun; 2(2):135-41. PubMed ID: 18458447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nanoflakes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells.
    Lee YJ; Lee SC; Jee SC; Sung JS; Kadam AA
    Colloids Surf B Biointerfaces; 2019 Jan; 173():18-26. PubMed ID: 30261345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes.
    Kim HW; Knowles JC; Kim HE
    J Biomed Mater Res A; 2004 Sep; 70(3):467-79. PubMed ID: 15293321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro responses to electrosprayed alkaline phosphatase/calcium phosphate composite coatings.
    de Jonge LT; van den Beucken JJ; Leeuwenburgh SC; Hamers AA; Wolke JG; Jansen JA
    Acta Biomater; 2009 Sep; 5(7):2773-82. PubMed ID: 19376000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of metal-ion-to-fuel ratio on the phase formation of bioceramic phosphates synthesized by self-propagating combustion.
    Sasikumar S; Vijayaraghavan R
    Sci Technol Adv Mater; 2008 Jul; 9(3):035003. PubMed ID: 27878000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.