BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 26035129)

  • 1. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence.
    Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes.
    Schumacher J
    Mol Microbiol; 2016 Feb; 99(4):729-48. PubMed ID: 26514268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence.
    Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B
    Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen.
    Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M
    FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea.
    Yang Q; Chen Y; Ma Z
    Fungal Genet Biol; 2013 Jan; 50():63-71. PubMed ID: 23147398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of
    Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451
    [No Abstract]   [Full Text] [Related]  

  • 7. Compartmentalization of Melanin Biosynthetic Enzymes Contributes to Self-Defense against Intermediate Compound Scytalone in
    Chen X; Zhu C; Na Y; Ren D; Zhang C; He Y; Wang Y; Xiang S; Ren W; Jiang Y; Xu L; Zhu P
    mBio; 2021 Mar; 12(2):. PubMed ID: 33758088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions.
    Cheng CH; Yang CA; Peng KC
    Phytopathology; 2012 Nov; 102(11):1054-63. PubMed ID: 22734558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold
    Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H
    J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.
    Zhang Z; Qin G; Li B; Tian S
    Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment.
    Castillo L; Plaza V; Larrondo LF; Canessa P
    Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox systems in Botrytis cinerea: impact on development and virulence.
    Viefhues A; Heller J; Temme N; Tudzynski P
    Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Autophagy Gene
    Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea.
    Rascle C; Dieryckx C; Dupuy JW; Muszkieta L; Souibgui E; Droux M; Bruel C; Girard V; Poussereau N
    Environ Microbiol Rep; 2018 Oct; 10(5):555-568. PubMed ID: 30066486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.
    Arbelet D; Malfatti P; Simond-Côte E; Fontaine T; Desquilbet L; Expert D; Kunz C; Soulié MC
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1324-34. PubMed ID: 20672878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea.
    Kokkelink L; Minz A; Al-Masri M; Giesbert S; Barakat R; Sharon A; Tudzynski P
    Fungal Genet Biol; 2011 Nov; 48(11):1012-9. PubMed ID: 21839848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea.
    Viefhues A; Schlathoelter I; Simon A; Viaud M; Tudzynski P
    Eukaryot Cell; 2015 Jul; 14(7):636-51. PubMed ID: 25934690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Botrytis cinerea KLP-7 Kinesin acts as a Virulence Determinant during Plant Infection.
    Tayal P; Raj S; Sharma E; Kumar M; Dayaman V; Verma N; Jogawat A; Dua M; Kapoor R; Johri AK
    Sci Rep; 2017 Sep; 7(1):10664. PubMed ID: 28878341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea.
    Zhang W; Cao Y; Li H; Rasmey AM; Zhang K; Shi L; Ge B
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):398. PubMed ID: 38940906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.