These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26035452)

  • 1. Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design.
    Yeo J; Hong S; Kim G; Lee H; Suh YD; Park I; Grigoropoulos CP; Ko SH
    ACS Nano; 2015 Jun; 9(6):6059-68. PubMed ID: 26035452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.
    Hong S; Yeo J; Manorotkul W; Kang HW; Lee J; Han S; Rho Y; Suh YD; Sung HJ; Ko SH
    Nanoscale; 2013 May; 5(9):3698-703. PubMed ID: 23494004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanowire-on-Nanowire: All-Nanowire Electronics by On-Demand Selective Integration of Hierarchical Heterogeneous Nanowires.
    Lee H; Manorotkul W; Lee J; Kwon J; Suh YD; Paeng D; Grigoropoulos CP; Han S; Hong S; Yeo J; Ko SH
    ACS Nano; 2017 Dec; 11(12):12311-12317. PubMed ID: 29077403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature large-area fabrication of ZnO nanowires on flexible plastic substrates by solution-processible metal-seeded hydrothermal growth.
    Yoo K; Lee W; Kang K; Kim I; Kang D; Oh DK; Kim MC; Choi H; Kim K; Kim M; Kim JD; Park I; Ok JG
    Nano Converg; 2020 Jul; 7(1):24. PubMed ID: 32661786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics.
    In JB; Kwon HJ; Lee D; Ko SH; Grigoropoulos CP
    Small; 2014 Feb; 10(4):741-9. PubMed ID: 24068694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital selective growth of ZnO nanowire arrays from inkjet-printed nanoparticle seeds on a flexible substrate.
    Ko SH; Lee D; Hotz N; Yeo J; Hong S; Nam KH; Grigoropoulos CP
    Langmuir; 2012 Mar; 28(10):4787-92. PubMed ID: 22126367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low temperature combination method for the production of ZnO nanowires.
    Cross RB; Souza MM; Sankara Narayanan EM
    Nanotechnology; 2005 Oct; 16(10):2188-92. PubMed ID: 20817993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly integrated synthesis of heterogeneous nanostructures on nanowire heater array.
    Jin CY; Yun J; Kim J; Yang D; Kim DH; Ahn JH; Lee KC; Park I
    Nanoscale; 2014 Nov; 6(23):14428-32. PubMed ID: 25341074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.
    Mahpeykar SM; Koohsorkhi J; Ghafoori-Fard H
    Nanotechnology; 2012 Apr; 23(16):165602. PubMed ID: 22460691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor.
    Liu J; Wu W; Bai S; Qin Y
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4197-200. PubMed ID: 21942652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates.
    Kim BH; Kwon JW
    Sci Rep; 2014 Mar; 4():4379. PubMed ID: 24625584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate.
    Kwon J; Hong S; Lee H; Yeo J; Lee SS; Ko SH
    Nanoscale Res Lett; 2013 Nov; 8(1):489. PubMed ID: 24252130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires.
    Tian JH; Hu J; Li SS; Zhang F; Liu J; Shi J; Li X; Tian ZQ; Chen Y
    Nanotechnology; 2011 Jun; 22(24):245601. PubMed ID: 21508463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-parametric growth of silicon nanowires in a single platform by laser-induced localized heat sources.
    Hwang DJ; Ryu SG; Grigoropoulos CP
    Nanotechnology; 2011 Sep; 22(38):385303. PubMed ID: 21865630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrashort pulse manipulation of ZnO nanowire growth.
    Lee ET; Shimotsuma Y; Sakakura M; Nishi M; Miura K; Hirao K
    J Nanosci Nanotechnol; 2009 Jan; 9(1):618-26. PubMed ID: 19441358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth.
    Yeo J; Kim G; Hong S; Lee J; Kwon J; Lee H; Park H; Manoroktul W; Lee MT; Lee BJ; Grigoropoulos CP; Ko SH
    Small; 2014 Dec; 10(24):5015-22. PubMed ID: 25168280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnO nanowire lasers.
    Vanmaekelbergh D; van Vugt LK
    Nanoscale; 2011 Jul; 3(7):2783-800. PubMed ID: 21552596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of controlled integration of ZnO nanowires using pulsed-laser-induced chemical deposition.
    Liu Z; Liu S; Wu W; Liu CR
    Nanoscale; 2019 Feb; 11(6):2617-2623. PubMed ID: 30688949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexographic printing-assisted fabrication of ZnO nanowire devices.
    Lloyd JS; Fung CM; Deganello D; Wang RJ; Maffeis TG; Lau SP; Teng KS
    Nanotechnology; 2013 May; 24(19):195602. PubMed ID: 23579099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.