These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26035474)

  • 1. Porous, Water-Resistant Multifilament Yarn Spun from Gelatin.
    Stoessel PR; Krebs U; Hufenus R; Halbeisen M; Zeltner M; Grass RN; Stark WJ
    Biomacromolecules; 2015 Jul; 16(7):1997-2005. PubMed ID: 26035474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelatin yarns inspired by tendons--structural and mechanical perspectives.
    Selle HK; Bar-On B; Marom G; Wagner HD
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():1-7. PubMed ID: 25492166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(lactic acid) Yarns with Added Rosins.
    Bolskis E; Adomavičiūtė E; Griškonis E
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen multifilament spinning.
    Tonndorf R; Aibibu D; Cherif C
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110105. PubMed ID: 31753356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method.
    Wu X; Liu Y; Li X; Wen P; Zhang Y; Long Y; Wang X; Guo Y; Xing F; Gao J
    Acta Biomater; 2010 Mar; 6(3):1167-77. PubMed ID: 19733699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of porous gelatin microfibers using an aqueous wet spinning process.
    Yang CY; Chiu CT; Chang YP; Wang YJ
    Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(4):173-6. PubMed ID: 19526441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of controlled highly porous hyaluronan/gelatin cross-linking sponges for tissue engineering.
    Ko CL; Tien YC; Wang JC; Chen WC
    J Mech Behav Biomed Mater; 2012 Oct; 14():227-38. PubMed ID: 23122717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose.
    Jalaja K; James NR
    Int J Biol Macromol; 2015 Feb; 73():270-8. PubMed ID: 25478965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Myrrh Extracts on the Properties of PLA Films and Melt-Spun Multifilament Yarns.
    Bolskis E; Adomavičiūtė E; Griškonis E; Norvydas V
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis.
    Ozaki Y; Takagi Y; Mori H; Hara M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():146-54. PubMed ID: 25063104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material.
    Han F; Dong Y; Su Z; Yin R; Song A; Li S
    Int J Pharm; 2014 Dec; 476(1-2):124-33. PubMed ID: 25275938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wool keratin: a novel building block for layer-by-layer self-assembly.
    Yang X; Zhang H; Yuan X; Cui S
    J Colloid Interface Sci; 2009 Aug; 336(2):756-60. PubMed ID: 19447401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.
    Ding F; Hsu SH; Wu DH; Chiang WY
    J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.
    Sharma A; Bhat S; Nayak V; Kumar A
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold.
    Srivastava A; Kumar A
    J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel.
    Singh D; Tripathi A; Nayak V; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(13):1733-51. PubMed ID: 20843432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering.
    Khan MN; Islam JM; Khan MA
    J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity.
    Katoh K; Tanabe T; Yamauchi K
    Biomaterials; 2004 Aug; 25(18):4255-62. PubMed ID: 15046915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture.
    Xing Q; Zhao F; Chen S; McNamara J; Decoster MA; Lvov YM
    Acta Biomater; 2010 Jun; 6(6):2132-9. PubMed ID: 20035906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.