These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26035483)
1. Specific role of dietary fat in modifying cardiovascular and locomotor activity 24-h rhythms. Barzel B; Lim K; Burke SL; Armitage JA; Head GA Chronobiol Int; 2015 Jun; 32(5):668-76. PubMed ID: 26035483 [TBL] [Abstract][Full Text] [Related]
2. Loss of nocturnal dipping of blood pressure and heart rate in obesity-induced hypertension in rabbits. Antic V; Van Vliet BN; Montani JP Auton Neurosci; 2001 Jul; 90(1-2):152-7. PubMed ID: 11485285 [TBL] [Abstract][Full Text] [Related]
3. Loss of diurnal rhythms of blood pressure and heart rate caused by high-fat feeding. Carroll JF; Thaden JJ; Wright AM; Strange T Am J Hypertens; 2005 Oct; 18(10):1320-6. PubMed ID: 16202855 [TBL] [Abstract][Full Text] [Related]
4. Reduced preprandial dipping accounts for rapid elevation of blood pressure and renal sympathetic nerve activity in rabbits fed a high-fat diet. Burke SL; Prior LJ; Lukoshkova EV; Lim K; Barzel B; Davern PJ; Armitage JA; Head GA Chronobiol Int; 2013 Jun; 30(5):726-38. PubMed ID: 23688116 [TBL] [Abstract][Full Text] [Related]
5. Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice. Sasaki H; Ohtsu T; Ikeda Y; Tsubosaka M; Shibata S Chronobiol Int; 2014 Nov; 31(9):959-75. PubMed ID: 25007387 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous overfeeding with a 'cafeteria diet' in men: effects on 24-hour energy expenditure and substrate oxidation. Larson DE; Rising R; Ferraro RT; Ravussin E Int J Obes Relat Metab Disord; 1995 May; 19(5):331-7. PubMed ID: 7647825 [TBL] [Abstract][Full Text] [Related]
7. Timing of fat and liquid sugar intake alters substrate oxidation and food efficiency in male Wistar rats. Oosterman JE; Foppen E; van der Spek R; Fliers E; Kalsbeek A; la Fleur SE Chronobiol Int; 2015 Mar; 32(2):289-98. PubMed ID: 25317718 [TBL] [Abstract][Full Text] [Related]
8. Meal pattern alterations associated with intermittent fasting for weight loss are normalized after high-fat diet re-feeding. Gotthardt JD; Bello NT Physiol Behav; 2017 May; 174():49-56. PubMed ID: 28263771 [TBL] [Abstract][Full Text] [Related]
9. Controlling access time to a high-fat diet during the inactive period protects against obesity in mice. Haraguchi A; Aoki N; Ohtsu T; Ikeda Y; Tahara Y; Shibata S Chronobiol Int; 2014 Oct; 31(8):935-44. PubMed ID: 24984029 [TBL] [Abstract][Full Text] [Related]
10. Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats. Boulamery-Velly A; Simon N; Vidal J; Mouchet J; Bruguerolle B Chronobiol Int; 2005; 22(3):489-98. PubMed ID: 16076649 [TBL] [Abstract][Full Text] [Related]
11. Eating meals before wheel-running exercise attenuate high fat diet-driven obesity in mice under two meals per day schedule. Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Shibata S Chronobiol Int; 2015 Jun; 32(5):677-86. PubMed ID: 26035481 [TBL] [Abstract][Full Text] [Related]
12. Reestablishment of Dos Santos Alves EM; de Araújo FWC; Soares PC; da Silva LAR; de Araújo Gonçalves DN; do Nascimento E Chronobiol Int; 2024 Jul; 41(7):941-958. PubMed ID: 38845540 [TBL] [Abstract][Full Text] [Related]
13. Body weight regulation in obese and obese-reduced rats. Hill JO Int J Obes; 1990; 14 Suppl 1():31-45; discussion 45-7. PubMed ID: 2228416 [TBL] [Abstract][Full Text] [Related]
14. Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in mice. Bake T; Murphy M; Morgan DG; Mercer JG Appetite; 2014 Jun; 77(100):60-71. PubMed ID: 24631639 [TBL] [Abstract][Full Text] [Related]
15. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Prior LJ; Eikelis N; Armitage JA; Davern PJ; Burke SL; Montani JP; Barzel B; Head GA Hypertension; 2010 Apr; 55(4):862-8. PubMed ID: 20194306 [TBL] [Abstract][Full Text] [Related]
16. Effect of dietary energy density and meal size on growth performance, eating pattern, and carcass and meat quality in Holstein steers fed high-concentrate diets. Marti S; Pérez M; Aris A; Bach A; Devant M J Anim Sci; 2014 Aug; 92(8):3515-25. PubMed ID: 25006061 [TBL] [Abstract][Full Text] [Related]
17. 24-hour recordings of blood pressure, heart rate and behavioural activity in rabbits by radio-telemetry: effects of feeding and hypertension. van den Buuse M; Malpas SC Physiol Behav; 1997 Jul; 62(1):83-9. PubMed ID: 9226346 [TBL] [Abstract][Full Text] [Related]
18. The effect of high fat-induced obesity on cardiovascular and physical activity and opioid responsiveness in conscious rats. Hill-Pryor C; Dunbar JC Clin Exp Hypertens; 2006 Feb; 28(2):133-45. PubMed ID: 16546839 [TBL] [Abstract][Full Text] [Related]
19. Influence of food texture on energy metabolism and adiposity in male rats. Han W; Utoyoma M; Akieda-Asai S; Hidaka A; Yamada C; Hasegawa K; Nunoi H; Date Y Exp Physiol; 2018 Oct; 103(10):1347-1356. PubMed ID: 30105882 [TBL] [Abstract][Full Text] [Related]
20. Roles of eating, rumination, and arterial pressure in determination of the circadian rhythm of renal blood flow in sheep. Tebot I; Bonnet JM; Junot S; Ayoub JY; Paquet C; Cirio A J Anim Sci; 2009 Feb; 87(2):554-61. PubMed ID: 18849386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]