These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26035770)

  • 1. Structures, stabilities, and electronic properties of defects in monolayer black phosphorus.
    Li XB; Guo P; Cao TF; Liu H; Lau WM; Liu LM
    Sci Rep; 2015 Jun; 5():10848. PubMed ID: 26035770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of copper concentration and sulfur vacancies on electronic properties of MoS
    Tayyab M; Hussain A; Syed WA; Nabi S; Asif QUA
    J Mol Model; 2021 Jul; 27(7):213. PubMed ID: 34195899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.
    Wang W; Bai L; Yang C; Fan K; Xie Y; Li M
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles calculations to investigate electronic structures and magnetic regulation of non-metallic elements doped BP with point defects.
    Wen J; Li N; Shi Q; Wu H; Feng X; Wang C; Zhang J
    J Mol Graph Model; 2023 Jan; 118():108370. PubMed ID: 36370688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and properties of intrinsic and extrinsic defects in black phosphorus.
    Gaberle J; Shluger AL
    Nanoscale; 2018 Nov; 10(41):19536-19546. PubMed ID: 30320323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilities and electronic properties of monolayer MoS2 with one or two sulfur line vacancy defects.
    Han Y; Hu T; Li R; Zhou J; Dong J
    Phys Chem Chem Phys; 2015 Feb; 17(5):3813-9. PubMed ID: 25562072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady semiconducting properties of monolayer PtSe
    Zhao X; Huang R; Wang T; Dai X; Wei S; Ma Y
    Phys Chem Chem Phys; 2020 Mar; 22(10):5765-5773. PubMed ID: 32104810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability.
    Lv W; Yang B; Wang B; Wan W; Ge Y; Yang R; Hao C; Xiang J; Zhang B; Zeng Z; Liu Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9663-9668. PubMed ID: 29481035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying the electronic and magnetic properties of the scandium nitride semiconductor monolayer
    Van On V; Guerrero-Sanchez J; Hoat DM
    Phys Chem Chem Phys; 2024 Jan; 26(4):3587-3596. PubMed ID: 38214549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point defects in two-dimensional BeO monolayer: a first-principles study on electronic and magnetic properties.
    Bafekry A; Faraji M; Karbasizadeh S; Khatibani AB; Ziabari AA; Gogova D; Ghergherehchi M
    Phys Chem Chem Phys; 2021 Nov; 23(42):24301-24312. PubMed ID: 34673868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Electronic and Magnetic Properties of Multi-Atom Doped Black Phosphorene.
    Wang K; Wang H; Zhang M; Zhao W; Liu Y; Qin H
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30823569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embedded carbon nanowire in black phosphorene and C-doping: the rule to control electronic properties.
    Pedrosa RN; Amorim RG; Scopel WL
    Nanotechnology; 2020 Apr; 31(27):275201. PubMed ID: 32168497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing doping strategy in arsenene monolayer for spintronic and optoelectronic applications: a case study of germanium and nitrogen as dopants.
    Van On V; Ha CV; Anh DT; Guerrero-Sanchez J; Hoat DM
    J Phys Condens Matter; 2022 Jun; 34(35):. PubMed ID: 35724657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Effects of Carbon Vacancies in Conjunction with Phosphorus Dopant across Bilayer Graphene for the Enhanced Hydrogen Evolution Reaction.
    Hu H; Choi JH
    ACS Omega; 2024 Apr; 9(14):16592-16600. PubMed ID: 38617609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting.
    Liu J; Li XB; Wang D; Lau WM; Peng P; Liu LM
    J Chem Phys; 2014 Feb; 140(5):054707. PubMed ID: 24511968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers.
    K C S; Longo RC; Addou R; Wallace RM; Cho K
    Nanotechnology; 2014 Sep; 25(37):375703. PubMed ID: 25158867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and Optical Properties of Twin T-Graphene Co-Doped with Boron and Phosphorus.
    Gao Y; Xie Y; Wang S; Li S; Chen L; Zhang J
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the aluminum-doped and single vacancy blue phosphorene interactions with molecules: a density functional theory study.
    Corona-García CA; Martínez-Olguín AC; Sánchez-Ochoa F; Cocoletzi GH
    J Mol Model; 2021 Apr; 27(5):141. PubMed ID: 33909152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric and electronic structures of mono- and di-vacancies in phosphorene.
    Hu T; Dong J
    Nanotechnology; 2015 Feb; 26(6):065705. PubMed ID: 25597897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.