BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26035780)

  • 1. Local proliferation is the main source of rod microglia after optic nerve transection.
    Yuan TF; Liang YX; Peng B; Lin B; So KF
    Sci Rep; 2015 Jun; 5():10788. PubMed ID: 26035780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection.
    Zhang Y; Peng B; Wang S; Liang YX; Yang J; So KF; Yuan TF
    Sci Rep; 2016 Feb; 6():21816. PubMed ID: 26888347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia.
    Galindo-Romero C; Valiente-Soriano FJ; Jiménez-López M; García-Ayuso D; Villegas-Pérez MP; Vidal-Sanz M; Agudo-Barriuso M
    Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):974-85. PubMed ID: 23307961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Increasing expression of microglia in the retina after optic nerve transection in rats].
    Fu QL; Zhang Y; Su YH; Sun YQ; Sun SJ; Shi JB
    Zhonghua Yan Ke Za Zhi; 2011 Dec; 47(12):1084-8. PubMed ID: 22336117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-α expression.
    Yin H; Yin H; Zhang W; Miao Q; Qin Z; Guo S; Fu Q; Ma J; Wu F; Yin J; Yang Y; Fang X
    Brain Res; 2016 Nov; 1650():10-20. PubMed ID: 27569587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral retinal microglial response to unilateral optic nerve transection in rats.
    Cen LP; Han M; Zhou L; Tan L; Liang JJ; Pang CP; Zhang M
    Neuroscience; 2015 Dec; 311():56-66. PubMed ID: 26432953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayered retinal microglial response to optic nerve transection in rats.
    Garcia-Valenzuela E; Sharma SC; Piña AL
    Mol Vis; 2005 Mar; 11():225-31. PubMed ID: 15827548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microglial dynamics after axotomy-induced retinal ganglion cell death.
    Nadal-Nicolás FM; Jiménez-López M; Salinas-Navarro M; Sobrado-Calvo P; Vidal-Sanz M; Agudo-Barriuso M
    J Neuroinflammation; 2017 Nov; 14(1):218. PubMed ID: 29121969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microglial responses in the avascular quail retina following transection of the optic nerve.
    Jeon GS; Kang TC; Park SW; Kim DW; Seo JH; Cho SS
    Brain Res; 2004 Oct; 1023(1):15-23. PubMed ID: 15364014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microglia/Macrophages and CD4
    Geng Y; Lu Z; Guan J; van Rooijen N; Zhi Y
    Front Immunol; 2021; 12():687898. PubMed ID: 34484185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early events of secondary degeneration after partial optic nerve transection: an immunohistochemical study.
    Fitzgerald M; Bartlett CA; Harvey AR; Dunlop SA
    J Neurotrauma; 2010 Feb; 27(2):439-52. PubMed ID: 19852581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of longitudinal in vivo measurements of retinal nerve fiber layer thickness and retinal ganglion cell density after optic nerve transection in rat.
    Choe TE; Abbott CJ; Piper C; Wang L; Fortune B
    PLoS One; 2014; 9(11):e113011. PubMed ID: 25393294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrin CD11b Deficiency Aggravates Retinal Microglial Activation and RGCs Degeneration After Acute Optic Nerve Injury.
    Cai XF; Lin S; Geng Z; Luo LL; Liu YJ; Zhang Z; Liu WY; Chen X; Li X; Yan J; Ye J
    Neurochem Res; 2020 May; 45(5):1072-1085. PubMed ID: 32052258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of retinal injury in the rat after optic nerve transection: an RT-PCR study.
    Chidlow G; Casson R; Sobrado-Calvo P; Vidal-Sanz M; Osborne NN
    Mol Vis; 2005 Jun; 11():387-96. PubMed ID: 15947739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downregulation of BM88 after optic nerve injury.
    Siddiqui AM; Sabljic TF; Koeberle PD; Ball AK
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1919-29. PubMed ID: 24526440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Crystallin protects RGC survival and inhibits microglial activation after optic nerve crush.
    Wu N; Yu J; Chen S; Xu J; Ying X; Ye M; Li Y; Wang Y
    Life Sci; 2014 Jan; 94(1):17-23. PubMed ID: 24220677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative retinal protein analysis after optic nerve transection reveals a neuroprotective role for hepatoma-derived growth factor on injured retinal ganglion cells.
    Hollander A; D'Onofrio PM; Magharious MM; Lysko MD; Koeberle PD
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3973-89. PubMed ID: 22531700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma.
    Bosco A; Inman DM; Steele MR; Wu G; Soto I; Marsh-Armstrong N; Hubbard WC; Calkins DJ; Horner PJ; Vetter ML
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1437-46. PubMed ID: 18385061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking retinal microgliosis in models of retinal ganglion cell damage.
    Liu S; Li ZW; Weinreb RN; Xu G; Lindsey JD; Ye C; Yung WH; Pang CP; Lam DS; Leung CK
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6254-62. PubMed ID: 22879415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effect of thioredoxins 1 and 2 in retinal ganglion cells after optic nerve transection and oxidative stress.
    Munemasa Y; Kim SH; Ahn JH; Kwong JM; Caprioli J; Piri N
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3535-43. PubMed ID: 18441302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.