BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 26036177)

  • 21. Multivariate Statistics, Mineralogy, and Radiological Hazards Assessment Due to the Natural Radioactivity Content in Pyroclastic Products from Mt. Etna, Sicily, Southern Italy.
    Caridi F; Spoto SE; Mottese AF; Paladini G; Crupi V; Belvedere A; Marguccio S; D'Agostino M; Faggio G; Grillo R; Messina G; Barreca F; Venuti V; Majolino D
    Int J Environ Res Public Health; 2022 Sep; 19(17):. PubMed ID: 36078754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An In-Depth Examination of the Natural Radiation and Radioactive Dangers Associated with Regularly Used Medicinal Herbs.
    Saudi HA; Abedelkader HT; Issa SAM; Diab HM; Alharshan GA; Uosif MAM; Bashter II; Ene A; Ghazaly ME; Zakaly HMH
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of radioactivity levels and assessment of radioactivity hazards of soil samples in Karaman, Turkey.
    Agar O; Boztosun I; Korkmaz ME; Özmen SF
    Radiat Prot Dosimetry; 2014 Dec; 162(4):630-7. PubMed ID: 24587487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of activity concentration of natural radionuclides for the assessment of radiological indices.
    Shanthi G; Thampi Thanka Kumaran J; Allen Gnana Raj G; Maniyan CG
    Radiat Prot Dosimetry; 2010 Sep; 141(1):90-6. PubMed ID: 20418329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiometric analysis of construction materials using HPGe gamma-ray spectrometry.
    Khandaker MU; Jojo PJ; Kassim HA; Amin YM
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):33-7. PubMed ID: 22887119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural radionuclides in ceramic building materials available in Cuddalore district, Tamil Nadu, India.
    Rajamannan B; Viruthagiri G; Suresh Jawahar K
    Radiat Prot Dosimetry; 2013 Oct; 156(4):531-4. PubMed ID: 23567197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of specific activity of 226Ra, 232Th and 40K for assessment of environmental hazards.
    Al-Haydari A; Al Sharabi ES; Al Buhairi MH
    Radiat Prot Dosimetry; 2012 Feb; 148(3):329-36. PubMed ID: 21429919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of radioactivity concentration in intertidal sediments from coastal provinces in Oman and estimation of hazard and radiation indices.
    Al Shaaibi M; Ali J; Duraman N; Tsikouras B; Masri Z
    Mar Pollut Bull; 2021 Jul; 168():112442. PubMed ID: 33989954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural radioactivity level in beach sand along the coast of Xiamen Island, China.
    Huang Y; Lu X; Ding X; Feng T
    Mar Pollut Bull; 2015 Feb; 91(1):357-61. PubMed ID: 25510548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. STUDY OF NATURAL RADIOACTIVITY (226Ra, 232Th AND 40K) IN SOIL SAMPLES FOR THE ASSESSMENT OF AVERAGE EFFECTIVE DOSE AND RADIATION HAZARDS.
    Bangotra P; Mehra R; Kaur K; Jakhu R
    Radiat Prot Dosimetry; 2016 Oct; 171(2):277-281. PubMed ID: 27056323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental impact of natural radionuclides from a coal-fired power plant in Spain.
    Charro E; Peña V
    Radiat Prot Dosimetry; 2013; 153(4):485-95. PubMed ID: 22807496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of natural radioactivity levels and associated dose rates in soil samples from Northern Rajasthan, India.
    Duggal V; Rani A; Mehra R; Ramola RC
    Radiat Prot Dosimetry; 2014 Jan; 158(2):235-40. PubMed ID: 23943368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural radioactivity content in soil and indoor air of Chellanam.
    Mathew S; Rajagopalan M; Abraham JP; Balakrishnan D; Umadevi AG
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):80-3. PubMed ID: 22951996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural radionuclides and radiological risk assessment in the stream and river sediments of a high background natural radiation area Kanyakumari, India.
    Natarajan T; Sahoo SK; Inoue K; Arae H; Aono T; Fukushi M
    Environ Monit Assess; 2024 Mar; 196(3):330. PubMed ID: 38427152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Baseline levels of natural radionuclides concentration in sediments East coastline of North Cyprus.
    Abbasi A; Zakaly HMH; Mirekhtiary F
    Mar Pollut Bull; 2020 Dec; 161(Pt A):111793. PubMed ID: 33166852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of a naturally occurring high background radiation area with elevated levels of thorium along coastal Odisha, India using radiometric methods.
    Ghosal S; Agrahari S; Banerjee D; Sengupta D
    Chemosphere; 2021 Nov; 283():131221. PubMed ID: 34182624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of radionuclides and radiation hazard assessment in soils of Southern Namibia, Southern Africa.
    Oyedele JA; Shimboyo S
    Radiat Prot Dosimetry; 2013 Sep; 156(3):343-8. PubMed ID: 23550177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast.
    el-Taher A; Madkour HA
    Appl Radiat Isot; 2011 Feb; 69(2):550-8. PubMed ID: 21123076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of
    Salih NF
    Isotopes Environ Health Stud; 2019 Mar; 55(1):80-91. PubMed ID: 30241441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental radioactivity of soils and sediments: Egyptian sector of the Nile valley.
    Badawy WM; Duliu OG; Frontasyeva MV; El Samman H; Faanhof A
    Isotopes Environ Health Stud; 2018 Oct; 54(5):535-547. PubMed ID: 29873250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.