These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Chew J; Gendron TF; Prudencio M; Sasaguri H; Zhang YJ; Castanedes-Casey M; Lee CW; Jansen-West K; Kurti A; Murray ME; Bieniek KF; Bauer PO; Whitelaw EC; Rousseau L; Stankowski JN; Stetler C; Daughrity LM; Perkerson EA; Desaro P; Johnston A; Overstreet K; Edbauer D; Rademakers R; Boylan KB; Dickson DW; Fryer JD; Petrucelli L Science; 2015 Jun; 348(6239):1151-4. PubMed ID: 25977373 [TBL] [Abstract][Full Text] [Related]
7. Familial frontotemporal dementia and amyotrophic lateral sclerosis associated with the C9ORF72 hexanucleotide repeat. Hodges J Brain; 2012 Mar; 135(Pt 3):652-5. PubMed ID: 22366789 [No Abstract] [Full Text] [Related]
8. Clinical features of TBK1 carriers compared with C9orf72, GRN and non-mutation carriers in a Belgian cohort. Van Mossevelde S; van der Zee J; Gijselinck I; Engelborghs S; Sieben A; Van Langenhove T; De Bleecker J; Baets J; Vandenbulcke M; Van Laere K; Ceyssens S; Van den Broeck M; Peeters K; Mattheijssens M; Cras P; Vandenberghe R; De Jonghe P; Martin JJ; De Deyn PP; Cruts M; Van Broeckhoven C; Brain; 2016 Feb; 139(Pt 2):452-67. PubMed ID: 26674655 [TBL] [Abstract][Full Text] [Related]
9. A new inducible transgenic mouse model for C9orf72-associated GGGGCC repeat expansion supports a gain-of-function mechanism in C9orf72-associated ALS and FTD. Hukema RK; Riemslagh FW; Melhem S; van der Linde HC; Severijnen LA; Edbauer D; Maas A; Charlet-Berguerand N; Willemsen R; van Swieten JC Acta Neuropathol Commun; 2014 Dec; 2():166. PubMed ID: 25523491 [No Abstract] [Full Text] [Related]
10. Destiny does not only lie in the genes. Rosness T Tidsskr Nor Laegeforen; 2014 Feb; 134(3):261-2. PubMed ID: 24518443 [No Abstract] [Full Text] [Related]
11. Tale of two diseases: amyotrophic lateral sclerosis and frontotemporal dementia. Verma A Neurol India; 2014; 62(4):347-51. PubMed ID: 25237937 [TBL] [Abstract][Full Text] [Related]
12. Neuropsychiatric symptoms and survival in amyotrophic lateral sclerosis: a missing link? Mioshi E; Roberts R; Hornberger M Neurodegener Dis Manag; 2015; 5(2):89-91. PubMed ID: 25894870 [No Abstract] [Full Text] [Related]
13. Frontotemporal lobar dementia and amyotrophic lateral sclerosis associated with c9orf72 expansion. Le Ber I Rev Neurol (Paris); 2015; 171(6-7):475-81. PubMed ID: 26032484 [TBL] [Abstract][Full Text] [Related]
14. Genetic models of C9orf72: what is toxic? Moens TG; Partridge L; Isaacs AM Curr Opin Genet Dev; 2017 Jun; 44():92-101. PubMed ID: 28364657 [TBL] [Abstract][Full Text] [Related]
15. [The pathogenesis of amyotrophic lateral sclerosis and frontal lobe dementia is unraveling: pathology of the nucleus and glutamate sensitivity]. Tienari P; Kiviharju A; Valori M; Lindholm D; Laaksovirta H Duodecim; 2016; 132(5):423-31. PubMed ID: 27089615 [TBL] [Abstract][Full Text] [Related]
16. [Genetic coherence between hereditary amyotrophic lateral sclerosis and frontotemporal dementia]. Gjerde KV; Tysnes OB Tidsskr Nor Laegeforen; 2014 Feb; 134(3):302-6. PubMed ID: 24518478 [TBL] [Abstract][Full Text] [Related]
17. FTD and ALS: genetic ties that bind. Orr HT Neuron; 2011 Oct; 72(2):189-90. PubMed ID: 22017980 [TBL] [Abstract][Full Text] [Related]