BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26036588)

  • 1. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode.
    Wu D; Lu G; Zhang R; Lin Q; Yan Z; Liu J; Li Y
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15812-20. PubMed ID: 26036588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing hydroxyl radical production from cathodic ozone reduction during the ozone-electrolysis process with flow-through reactive electrochemical membrane cathode.
    Li X; Yu G; Wang Y
    Chemosphere; 2022 Sep; 303(Pt 2):135020. PubMed ID: 35605727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High activity of g-C
    Guo Z; Cao H; Wang Y; Xie Y; Xiao J; Yang J; Zhang Y
    Chemosphere; 2018 Jun; 201():206-213. PubMed ID: 29524821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process.
    Wang H; Yuan S; Zhan J; Wang Y; Yu G; Deng S; Huang J; Wang B
    Water Res; 2015 Sep; 80():20-9. PubMed ID: 25989593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process.
    Li X; Wang Y; Yuan S; Li Z; Wang B; Huang J; Deng S; Yu G
    Water Res; 2014 Oct; 63():81-93. PubMed ID: 24981746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozonation combined with electrolysis of 1,4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte.
    Kishimoto N; Nakagawa T; Asano M; Abe M; Yamada M; Ono Y
    Water Res; 2008 Jan; 42(1-2):379-85. PubMed ID: 17698164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of cathode material on electrolytic treatment of Acid Orange 7 by a three-phase three-dimensional electrode reactor].
    Xu LN; Zhao HZ; Ni JR
    Huan Jing Ke Xue; 2008 Apr; 29(4):942-7. PubMed ID: 18637343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of electrolysis, ozonation, and their combination process on treatment of municipal wastewater.
    Kishimoto N; Morita Y; Tsuno H; Yasuda Y
    Water Environ Res; 2007 Sep; 79(9):1033-42. PubMed ID: 17910373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process.
    Tian J; Olajuyin AM; Mu T; Yang M; Xing J
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11574-83. PubMed ID: 26931661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic ozonation of real food wastewater using catalyst synthesized from waste.
    Juwar VA; Rathod AP
    Environ Technol; 2023 Jan; 44(1):12-21. PubMed ID: 34319854
    [No Abstract]   [Full Text] [Related]  

  • 11. Electrochemical degradation of m-cresol using porous carbon-nanotube-containing cathode and Ti/SnO2-Sb2O5-IrO2 anode: kinetics, byproducts and biodegradability.
    Chu Y; Zhang D; Liu L; Qian Y; Li L
    J Hazard Mater; 2013 May; 252-253():306-12. PubMed ID: 23548920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process.
    Wang H; Bakheet B; Yuan S; Li X; Yu G; Murayama S; Wang Y
    J Hazard Mater; 2015 Aug; 294():90-8. PubMed ID: 25863024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process.
    Xia G; Wang Y; Wang B; Huang J; Deng S; Yu G
    Water Res; 2017 Jul; 118():26-38. PubMed ID: 28412550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-peroxone treatment of Orange II dye wastewater.
    Bakheet B; Yuan S; Li Z; Wang H; Zuo J; Komarneni S; Wang Y
    Water Res; 2013 Oct; 47(16):6234-43. PubMed ID: 23973257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-peroxone treatment of the antidepressant venlafaxine: Operational parameters and mechanism.
    Li X; Wang Y; Zhao J; Wang H; Wang B; Huang J; Deng S; Yu G
    J Hazard Mater; 2015 Dec; 300():298-306. PubMed ID: 26188873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the performance of electro-peroxone by incorporation of UV irradiation and BDD anodes.
    Bensalah N; Bedoui A
    Environ Technol; 2017 Dec; 38(23):2979-2987. PubMed ID: 28097924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid Orange 7 treatment and fate by electro-peroxone process using novel electrode arrangement.
    Ghalebizade M; Ayati B
    Chemosphere; 2019 Nov; 235():1007-1014. PubMed ID: 31561289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into a highly efficient electrolysis-ozone process for N,N-dimethylacetamide degradation: Quantitative analysis of the role of catalytic ozonation, fenton-like and peroxone reactions.
    Xiong Z; Lai B; Yang P
    Water Res; 2018 Sep; 140():12-23. PubMed ID: 29680778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes.
    Liu Y; Jiang J; Ma J; Yang Y; Luo C; Huangfu X; Guo Z
    Water Res; 2015 Jan; 68():750-8. PubMed ID: 25462779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process.
    Wang H; Mustafa M; Yu G; Östman M; Cheng Y; Wang Y; Tysklind M
    Chemosphere; 2019 Nov; 235():575-585. PubMed ID: 31276870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.